Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
BMC Cancer ; 24(1): 330, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468232

ABSTRACT

TMEFF1 is a new protein involved in the physiological functions of the central nervous system, and we previously reported TMEFF1 can promote ovarian cancer. ST14 was determined to be involved in the processes of epidermal differentiation, epithelial cell integrity, and vascular endothelial cell migration, etc. The relationship between ST14 and TMEFF1 in the ovary remains unknown. In this study, we detected the expression of ST14 and TMEFF1 in 130 different ovarian cancer tissues through immunohistochemistry. We determined ST14 and TMEFF1 were highly expressed in ovarian cancer, indicating a higher degree of tumor malignancy and a worse prognosis. Tissues significantly expressing ST14 also highly expressed TMEFF1, and the expression of the two proteins was positively correlated. Consistently, immunofluorescence double staining demonstrated the co-localization of ST14 and TMEFF1 in the same region, and immunoprecipitation confirmed the interaction between ST14 and TMEFF1. TMEFF1 expression was also reduced after knocking down ST14 through Western blot. MTT, wound healing and Transwell assays results determined that knockdown of ST14 inhibited proliferation, migration and invasion of ovarian cancer cells in vitro, but the inhibitory effect was restored after adding TMEFF1 exogenous protein. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways analysis showed that ST14 and its related genes were enriched in the processes of epithelial formation, intercellular adhesion, protein localization, and mitosis regulation. We also clarified the kinase, microRNA, and transcription factor target networks and the impact of genetic mutations on prognosis. Overall, high expression of ST14 and TMEFF1 in ovarian cancer predicts higher tumor malignancy and a worse prognosis. ST14 and TMEFF1 co-localize and interact with each other in ovarian cancer. ST14 can regulate TMEFF1 expression to promote proliferation, migration and invasion of ovarian cancer cells. We speculate that the relationship between ST14 and TMEFF1 in ovarian cancer could become a potential target for anti-cancer therapy.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , MicroRNAs/genetics , Transcription Factors/genetics , Mutation , Prognosis , Cell Proliferation/genetics , Cell Line, Tumor , Cell Movement/genetics , Gene Expression Regulation, Neoplastic
2.
BMC Cancer ; 22(1): 1338, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36544104

ABSTRACT

HERPUD1 is an important early marker of endoplasmic reticulum stress (ERS) and is involved in the ubiquitination and degradation of several unfolded proteins. However, its role in tumorigenesis is seldom studied, and its role in ovarian cancer is unclear. Lewis y antigen is a tumor-associated sugar antigen that acts as an 'antenna' on the cell surface to receive signals from both inside and outside the cell. We previously reported that Lewis y can promote ovarian cancer by promoting autophagy and inhibiting apoptosis. In this study, we detect the expression of HERPUD1 and Lewis y antigens in 119 different ovarian cancer tissues, determine their relationship with clinicopathological parameters, analyze the correlation between these two proteins, and explore the related cancer-promoting mechanisms through MTT, flow cytometry, western blotting, and bioinformatics. HERPUD1 is highly expressed in ovarian cancer, especially in the early stage, and the expression of HERPUD1 and Lewis y antigen was positively correlated. After overexpression of Lewis y antigen, the expression level of HERPUD1 increased. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) analysis showed that HERPUD1 and its related genes are enriched in regulating immunity, endoplasmic reticulum stress, ubiquitin-dependent degradation, ERS-induced apoptosis, and other key signaling pathways. We also clarified the HERPUD1 network of kinases, microRNA and transcription factor targets, and the impact of HERPUD1 mutations on prognosis. In addition, HERPUD1 promotes the proliferation of ovarian cancer cells, inhibits apoptosis, affects the cell cycle, promotes the occurrence of autophagy, and inhibits EMT and PI3K/AKT/mTOR and p38MAPK pathways. Overall, HERPUD1, regulated by the expression of tumor-associated protein Lewis y, promotes cell survival in the early stages of tumors, suggesting that HERPUD1 may play an important role in the development of ovarian cancer.


Subject(s)
Autophagy , Cell Survival , Ovarian Neoplasms , Female , Humans , Apoptosis/genetics , Autophagy/genetics , Cell Line, Tumor , Cell Proliferation/physiology , Cell Survival/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Transcription Factors , Membrane Proteins/metabolism
3.
BMC Cancer ; 22(1): 690, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739489

ABSTRACT

BACKGROUND: Nucleolar and spindle-associated protein 1 (NUSAP1) was shown to be involved in cell cycle regulation in cancer. However, its prognostic value and underlying mechanism in ovarian cancer remain unclear. METHODS: Oncomine, TCGA, CCLE, and UALCAN databases were used to analyze the expression level of NUSAP1 in ovarian cancer. The Kaplan-Meier plotter database was used to evaluate its prognostic value. The results from these analyses were further validated using immunohistochemical assay. The potential molecular mechanism of NUSAP1 in ovarian cancer was assessed with respect to homologous recombination repair, mismatch repair, and immunology using different databases. RESULTS: Database analyses and experimental results demonstrated that NUSAP1 was highly expressed in ovarian cancer, its levels being correlated with the FIGO stage. High NUSAP1 expression was an independent risk factor affecting the prognosis of patients with epithelial ovarian cancer. Moreover, NUSAP1 was associated with cell cycle, DNA replication, homologous recombination, and p53 signaling pathway. A positive correlation was identified between the expression of NUSAP1 and BRCA1/2 in ovarian cancer. In addition, NUSAP1 was associated with the expression of DNA mismatch repair genes and immune cell infiltration. CONCLUSIONS: NUSAP1 may be a valuable prognostic marker, as well as a novel biomarker for evaluating the response to immunotherapy of patients with ovarian cancer.


Subject(s)
Gene Expression Regulation, Neoplastic , Microtubule-Associated Proteins , Ovarian Neoplasms , Female , Humans , Microtubule-Associated Proteins/metabolism , Ovarian Neoplasms/genetics , Prognosis
4.
Pediatr Blood Cancer ; 69(9): e29705, 2022 09.
Article in English | MEDLINE | ID: mdl-35404538

ABSTRACT

BACKGROUND: Hepatoblastoma (HB) is one of the most common cancers in children. Recent studies have shown that the occurrence of nuclear accumulation of ß-catenin reaches 90%-100% because of the anomalous activation of the Wnt pathway in HB patients. Furthermore, emerging studies have shown that concomitant activated forms of YAP and ß-catenin trigger the formation and progression of HB. YAP might play a vital role in ß-catenin-mediated HB development. However, the molecular mechanisms by which YAP/TEAD4 transcription factor regulates CTNNB1 underlying HB pathogenesis are still unclear. PROCEDURE: YAP and CTNNB1 expression and correlation were analyzed by a combination of network enrichment analysis and gene set enrichment analysis of the public microarray datasets (GSE131329 and GSE81928). The protein levels of YAP and ß-catenin were further validated by Western blotting in paired patients' samples. The direct interplay between YAP/TEAD4 and the promoter region of CTNNB1 was proven by the combination of dual-luciferase report assay and chromatin immunoprecipitation assay. RESULTS: YAP-conserved signature and WNT signaling pathway were significantly enriched in HB patients, with upregulated expression of YAP and ß-catenin compared to non-HB patients. Further functional assays demonstrated that YAP/TEAD4 transcription factor complex could bind to the CTNNB1 promoter region directly to promote ß-catenin expression and cell proliferation. Targeting the YAP/TEAD4 complex with a specific small-molecule compound markedly suppressed HepaG2 cell proliferation. CONCLUSIONS: As the upstream transcription factor of CTNNB1, YAP/TEAD4 is a promising target for the treatment of HB patients with high levels of YAP and ß-catenin.


Subject(s)
Hepatoblastoma , Liver Neoplasms , YAP-Signaling Proteins , beta Catenin , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Child , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Hepatoblastoma/pathology , Humans , Liver Neoplasms/pathology , Muscle Proteins , Pathology, Molecular , TEA Domain Transcription Factors , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/genetics , beta Catenin/genetics , beta Catenin/metabolism
5.
J Nanobiotechnology ; 20(1): 38, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057811

ABSTRACT

Osteoarthritis (OA) is a degenerative illness that greatly impacts the life quality of patients. Currently, the therapeutic approaches for OA are very limited in clinical. The extracellular vesicles (EVs) derived from different mesenchymal stem cells displayed a prominent therapeutic effect on OA. But most EVs have limited resources and the risks of host rejection, immunological response, and etc. Human umbilical cord mesenchymal stem cells (hUCMSCs) hold the advantages of easy availability, minimal immune rejection, and excellent immunomodulatory effects, although hUCMSCs-EVs have seldom been applied in OA. Herein, we investigated the potential immunomodulatory and anti-inflammatory effects of hUCMSCs-EVs on the treatment of OA. In our results, the treatment of hUCMSCs-EVs promoted the polarization of M2-type macrophages and the expression of anti-inflammation-related cytokines (IL-10). Notably, the supernate of M2 macrophages induced by hUCMSCs-EVs inhibited the level of inflammation-associated factors in OA chondrocytes caused by IL-1ß. Further, injection of hUCMSCs-EVs in the articular lumen ameliorated progression of OA and exerted chondroprotective potential based on the OA joint model created by the surgical transection of the anterior cruciate ligament (ACLT). In addition, we found five highly enriched miRNAs in hUCMSCs-EVs, including has-miR-122-5p, has-miR-148a-3p, has-miR-486-5p, has-miR-let-7a-5p, and has-miR-100-5p by High-throughput sequencing of miRNAs, with targeted genes mainly enriched in the PI3K-Akt signaling pathway. Furthermore, we also detected the protein abundance of hUCMSCs-EVs using liquidation chromatography with tandem quadrupole mass spectrometry (LC-MS/MS) analysis. Thus, our study indicates that hUCMSCs-EVs can alleviate cartilage degradation during the OA progression, mechanically may through delivering key proteins and modulating the PI3K-Akt signaling pathway mediated by miRNAs to promote polarization of M2 macrophage, exhibiting potent immunomodulatory potential. The current findings suggest that hUCMSCs-EVs might serve as a new reagent for the therapy of OA.


Subject(s)
Anti-Inflammatory Agents , Extracellular Vesicles/chemistry , Mesenchymal Stem Cells/cytology , Osteoarthritis/metabolism , Umbilical Cord/cytology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Cell Extracts/chemistry , Cell Extracts/pharmacology , Humans , Immunomodulating Agents/chemistry , Immunomodulating Agents/pharmacology , Macrophages/drug effects , Male , Rats , Rats, Sprague-Dawley
6.
Genomics ; 113(4): 2134-2144, 2021 07.
Article in English | MEDLINE | ID: mdl-33845140

ABSTRACT

The RGS (regulator of G protein signaling) gene family, which includes negative regulators of G protein-coupled receptors, comprises important drug targets for malignant tumors. It is thus of great significance to explore the value of RGS family genes for diagnostic and prognostic prediction in ovarian cancer. The RNA-seq, immunophenotype, and stem cell index data of pan-cancer, The Cancer Genome Atlas (TCGA) data, and GTEx data of ovarian cancer were downloaded from the UCSC Xena database. In the pan-cancer database, the expression level of RGS1, RGS18, RGS19, and RGS13 was positively correlated with stromal and immune cell scores. Cancer patients with high RGS18 expression were more sensitive to cyclophosphamide and nelarabine, whereas those with high RGS19 expression were more sensitive to cladribine and nelarabine. The relationship between RGS family gene expression and overall survival (OS) and progression-free survival (PFS) of ovarian cancer patients was analyzed using the KM-plotter database, RGS17, RGS16, RGS1, and RGS8 could be used as diagnostic biomarkers of the immune subtype of ovarian cancer, and RGS10 and RGS16 could be used as biomarkers to predict the clinical stage of this disease. Further, Lasso cox analysis identified a five-gene risk score (RGS11, RGS10, RGS13, RGS4, and RGS3). Multivariate COX analysis showed that the risk score was an independent prognostic factor for patients with ovarian cancer. Immunohistochemistry and the HPA protein database confirmed that the five-gene signature is overexpressed in ovarian cancer. GSEA showed that it is mainly involved in the ECM-receptor interaction, TGF-beta signaling pathway, Wnt signaling pathway, and chemokine signaling pathway, which promote the occurrence and development of ovarian cancer. The prediction model of ovarian cancer constructed using RGS family genes is of great significance for clinical decision making and the personalized treatment of patients with ovarian cancer.


Subject(s)
Ovarian Neoplasms , RGS Proteins , Carcinoma, Ovarian Epithelial , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Prognosis , RGS Proteins/genetics , Receptors, G-Protein-Coupled , Signal Transduction
7.
BMC Med ; 19(1): 154, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34284787

ABSTRACT

BACKGROUND: Immune checkpoint inhibitor (ICI) therapy elicits durable antitumor responses in patients with many types of cancer. Genomic mutations may be used to predict the clinical benefits of ICI therapy. NOTCH homolog-4 (NOTCH4) is frequently mutated in several cancer types, but its role in immunotherapy is still unclear. Our study is the first to study the association between NOTCH4 mutation and the response to ICI therapy. METHODS: We tested the predictive value of NOTCH4 mutation in the discovery cohort, which included non-small cell lung cancer, melanoma, head and neck squamous cell carcinoma, esophagogastric cancer, and bladder cancer patients, and validated it in the validation cohort, which included non-small cell lung cancer, melanoma, renal cell carcinoma, colorectal cancer, esophagogastric cancer, glioma, bladder cancer, head and neck cancer, cancer of unknown primary, and breast cancer patients. Then, the relationships between NOTCH4 mutation and intrinsic and extrinsic immune response mechanisms were studied with multiomics data. RESULTS: We collected an ICI-treated cohort (n = 662) and found that patients with NOTCH4 mutation had better clinical benefits in terms of objective response rate (ORR: 42.9% vs 25.9%, P = 0.007), durable clinical benefit (DCB: 54.0% vs 38.1%, P = 0.021), progression-free survival (PFS, hazard ratio [HR] = 0.558, P < 0.001), and overall survival (OS, HR = 0.568, P = 0.006). In addition, we validated the prognostic value of NOTCH4 mutation in an independent ICI-treated cohort (n = 1423). Based on multiomics data, we found that NOTCH4 mutation is significantly associated with enhanced immunogenicity, including a high tumor mutational burden, the expression of costimulatory molecules, and activation of the antigen-processing machinery, and NOTCH4 mutation positively correlates activated antitumor immunity, including infiltration of diverse immune cells and various immune marker sets. CONCLUSIONS: Our findings indicated that NOTCH4 mutation serves as a novel biomarker correlated with a better response to ICI therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Esophageal Neoplasms , Lung Neoplasms , Stomach Neoplasms , Biomarkers , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Mutation , Receptor, Notch4
8.
Cancer Cell Int ; 21(1): 516, 2021 Sep 26.
Article in English | MEDLINE | ID: mdl-34565373

ABSTRACT

BACKGROUND: The WNT gene family plays an important role in the occurrence and development of malignant tumors, but its involvement has not been systematically analyzed in uterine corpus endometrial carcinoma (UCEC). This study aimed to evaluate the prognostic value of the WNT gene family in UCEC. METHODS: Pan-cancer transcriptome data of the UCSC Xena database and Genotype-Tissue Expression (GTEx) normal tissue data were downloaded to analyze the expression and prognosis of 19 WNT family genes in UCEC. A cohort from The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) was used to analyze the expression of the WNT gene family in different immune subtypes and clinical subgroups. The STRING database was used to analyze the interaction of the WNT gene family and its biological function. Univariate Cox regression analysis and Lasso cox analysis were used to identify the genes associated with significant prognosis and to construct multi signature prognosis model. An immunohistochemical assay was used to verify the predictive ability of the model. Risk score and the related clinical features were used to construct a nomogram. RESULTS: The expression levels of WNT2, WNT3, WNT3A, WNT5A, WNT7A, and WNT10A were significantly different among different immune subtypes and correlated with TP53 mutation. According to the WNT family genes related to the prognosis of UCEC, UCEC was classified into two subtypes (C1, C2). The prognosis of subtype C1 was significantly better than that of subtype C2. A 2-gene signature (WNT2 and WNT10A) was constructed and the two significantly prognostic groups can be divided based on median Risk score. These results were verified using real-world data, and the nomogram constructed using clinical features and Risk score had good prognostic ability. CONCLUSIONS: The 2-gene signature including WNT2 and WNT10A can be used to predict the prognosis of patients with UCEC, which is important for clinical decision-making and individualized therapy for patients with UCEC.

9.
Int J Mol Sci ; 22(16)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34445181

ABSTRACT

Trace amine-associated receptor 1 (TAAR1) is a Gαs- protein coupled receptor that plays an important role in the regulation of the immune system and neurotransmission in the CNS. In ovarian cancer cell lines, stimulation of TAAR1 via 3-iodothyronamine (T1AM) reduces cell viability and induces cell death and DNA damage. Aim of this study was to evaluate the prognostic value of TAAR1 on overall survival of ovarian carcinoma patients and the correlation of TAAR1 expression with clinical parameters. Ovarian cancer tissue of n = 156 patients who were diagnosed with epithelial ovarian cancer (serous, n = 110 (high-grade, n = 80; low-grade, n = 24; unknown, n = 6); clear cell, n = 12; endometrioid, n = 21; mucinous, n = 13), and who underwent surgery at the Department of Obstetrics and Gynecology, University Hospital of the Ludwig-Maximilians University Munich, Germany between 1990 and 2002, were analyzed. The tissue was stained immunohistochemically with anti-TAAR1 and evaluated with the semiquantitative immunoreactive score (IRS). TAAR1 expression was correlated with grading, FIGO and TNM-classification, and analyzed via the Spearman's rank correlation coefficient. Further statistical analysis was obtained using nonparametric Kruskal-Wallis rank-sum test and Mann-Whitney-U-test. This study shows that high TAAR1 expression is a positive prognosticator for overall survival in ovarian cancer patients and is significantly enhanced in low-grade serous carcinomas compared to high-grade serous carcinomas. The influence of TAAR1 as a positive prognosticator on overall survival indicates a potential prognostic relevance of signal transduction of thyroid hormone derivatives in epithelial ovarian cancer. Further studies are required to evaluate TAAR1 and its role in the development of ovarian cancer.


Subject(s)
Carcinoma, Ovarian Epithelial/pathology , Ovarian Neoplasms/pathology , Receptors, G-Protein-Coupled/analysis , Aged , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/metabolism , Female , Humans , Middle Aged , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/metabolism , Prognosis , Receptors, G-Protein-Coupled/metabolism , Thyronines/metabolism
10.
J Cell Mol Med ; 24(5): 2819-2831, 2020 03.
Article in English | MEDLINE | ID: mdl-31995855

ABSTRACT

Ovarian carcinoma has the highest mortality among the malignant tumours in gynaecology, and new treatment strategies are urgently needed to improve the clinical status of ovarian carcinoma patients. The Cancer Genome Atlas (TCGA) cohort were performed to explore the immune function of the internal environment of tumours and its clinical correlation with ovarian carcinoma. Finally, four molecular subtypes were obtained based on the global immune-related genes. The correlation analysis and clinical characteristics showed that four subtypes were all significantly related to clinical stage; the immune scoring results indicated that most immune signatures were upregulated in C3 subtype, and the majority of tumour-infiltrating immune cells were upregulated in both C3 and C4 subtypes. Compared with other subtypes, C3 subtype had a higher BRCA1 mutation, higher expression of immune checkpoints, and optimal survival prognosis. These findings of the immunological microenvironment in tumours may provide new ideas for developing immunotherapeutic strategies for ovarian carcinoma.


Subject(s)
BRCA1 Protein/genetics , Mutation/genetics , Ovarian Neoplasms/genetics , Ovarian Neoplasms/immunology , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Immunity , Middle Aged , Prognosis , Reproducibility of Results , Survival Analysis , Treatment Outcome
11.
Jpn J Clin Oncol ; 50(3): 241-253, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31990345

ABSTRACT

BACKGROUND: This study aims to analyse the expression of human MOF in endometrial carcinoma cells and its relationship with estrogen and estrogen receptor and to investigate the effect of estrogen-human MOF on the malignant biological behaviours of endometrial carcinoma cells. METHODS: The expression of human MOF was detected in different endometrial tissues by immunohistochemistry. The effects of human MOF, human MOF combined with estrogen stimulation and estrogen plus anti-human MOF antibody blocking on the proliferation of endometrial carcinoma cells were evaluated by western blotting, real-time polymerase chain reaction, cell proliferation assay and cell cycle distribution. Bioinformatics was used to identify the correlations of human MOF and estrogen and involved pathways. RESULTS: The expression levels of human MOF in endometrial carcinoma tissues were significantly higher than that in atypical hyperplasia and normal endometrial tissues. High expression of human MOF was associated with late-stage cancer, lymph node metastasis and short survival time, and it was also an independent prognostic risk factor for endometrial carcinoma. After human MOF knockdown, the proliferation, migration and invasive capacity of Ishikawa cells decreased and cell apoptosis increased. After stimulation with estrogen, the PI3K/Akt and Ras-Raf-MEK-ERK signalling pathways were activated, and the expression of the human MOF protein was increased. human MOF (KAT8) expression showed a positive correlation with ESR1 expression, and KAT8-associated genes were enriched in the cell cycle pathways and splicing pathways. CONCLUSION: Human MOF was highly expressed in endometrial carcinoma and associated with proliferation. Estrogen/estrogen receptor enhanced human MOF expression; promoted the proliferation, migration and invasion of Ishikawa cells; and inhibited cell apoptosis by activating the PI3K/Akt and Ras-Raf-MEK-ERK signalling pathways.


Subject(s)
Endometrial Neoplasms/metabolism , Estrogens/metabolism , Histone Acetyltransferases/metabolism , Receptors, Estrogen/metabolism , Adult , Aged , Apoptosis , Cell Cycle , Cell Line, Tumor , Cell Proliferation/drug effects , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrium/metabolism , Female , Histone Acetyltransferases/genetics , Humans , Middle Aged , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , Signal Transduction , Young Adult
12.
Int J Mol Sci ; 21(23)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271935

ABSTRACT

(1) Background: Biomarkers might play a significant role in predicting the clinical outcomes of patients with ovarian cancer. By analyzing lipid metabolism genes, future perspectives may be uncovered; (2) Methods: RNA-seq data for serous ovarian cancer were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases. The non-negative matrix factorization package in programming language R was used to classify molecular subtypes of lipid metabolism genes and the limma package in R was performed for functional enrichment analysis. Through lasso regression, we constructed a multi-gene prognosis model; (3) Results: Two molecular subtypes were obtained and an 11-gene signature was constructed (PI3, RGS, ADORA3, CH25H, CCDC80, PTGER3, MATK, KLRB1, CCL19, CXCL9 and CXCL10). Our prognostic model shows a good independent prognostic ability in ovarian cancer. In a nomogram, the predictive efficiency was notably superior to that of traditional clinical features. Related to known models in ovarian cancer with a comparable amount of genes, ours has the highest concordance index; (4) Conclusions: We propose an 11-gene signature prognosis prediction model based on lipid metabolism genes in serous ovarian cancer.


Subject(s)
Biomarkers, Tumor , Cystadenocarcinoma, Serous/etiology , Cystadenocarcinoma, Serous/metabolism , Lipid Metabolism , Ovarian Neoplasms/etiology , Ovarian Neoplasms/metabolism , Computational Biology , Cystadenocarcinoma, Serous/mortality , Cystadenocarcinoma, Serous/pathology , Databases, Genetic , Disease Susceptibility , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Ovarian Neoplasms/mortality , Ovarian Neoplasms/pathology , Prognosis , ROC Curve , Transcriptome
13.
J Cell Physiol ; 234(7): 11023-11036, 2019 07.
Article in English | MEDLINE | ID: mdl-30633343

ABSTRACT

BACKGROUND: Ovarian cancer is one of the three major malignant tumors of the female reproductive system, and the mortality associated with ovarian cancer ranks first among gynecologic malignant tumors. The pathogenesis of ovarian cancer is not yet clearly defined but elucidating this process would be of great significance for clinical diagnosis, prevention, and treatment. For this study, we used bioinformatics to identify the key pathogenic genes and reveal the potential molecular mechanisms of ovarian cancer; we used immunohistochemistry to validate them. METHODS: We analyzed and integrated four gene expression profiles (GSE14407, GSE18520, GSE26712, and GSE54388), which were downloaded from the Gene Expression Omnibus (GEO) database, with the aim of obtaining a common differentially expressed gene (DEG). Then, we performed Gene Ontology (GO) analysis and Kyoto Encyclopedia of Gene and Genome (KEGG) pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery (DAVID). We then established a protein-protein interaction (PPI) network of the DEGs through the Search Tool for the Retrieval of Interacting Genes (STRING) database and selected hub genes. Finally, survival analysis of the hub genes was performed using a Kmplotter online tool. RESULTS: A total of 226 DEGs were detected after the analysis of the four gene expression profiles; of these, 87 were upregulated genes and 139 were downregulated. GO analysis results showed that DEGs were significantly enriched in biological processes including the G2/M transition of the mitotic cell cycle, the apoptotic process, cell proliferation, blood coagulation, and positive regulation of the canonical Wnt signaling pathway. KEGG analysis results showed that DEGs were particularly enriched in the cell cycle, the p53 signaling pathway, the Wnt signaling pathway, the Ras signaling pathway, the Rap1 signaling pathway, and tyrosine metabolism. We selected 50 hub genes from the PPI network, which had 147 nodes and 655 edges, and 30 of them were associated with the prognosis of ovarian cancer. We performed immunohistochemistry on phosphoserine aminotransferase 1 (PSAT1). PSAT1 was highly expressed in cancer tissues, and its expression level was related to clinical stage and tissue differentiation in ovarian cancer. A Cox proportional risk model suggested that high expression of PSAT1 and late clinical stage were independent risk factors for survival and prognosis of ovarian cancer patients. CONCLUSION: The detection of DEGs using bioinformatics analysis might be crucial to understanding the pathogenesis of ovarian cancer, especially the molecular mechanisms of its development. The association between PSAT1 expression and the occurrence, development, and prognosis of ovarian cancer was further verified by immunohistochemistry. The PSAT1 expression can be used as a prognostic marker to provide a potential target for the diagnosis and treatment of ovarian cancer.


Subject(s)
Computational Biology , Gene Expression Regulation, Neoplastic , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Prognosis , Biomarkers, Tumor , Databases, Genetic , Female , Humans , Middle Aged , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Transcriptome
14.
J Transl Med ; 17(1): 275, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31474227

ABSTRACT

BACKGROUND: Annexins are involved in vesicle trafficking, cell proliferation and apoptosis, but their functional mechanisms in ovarian cancer remain unclear. In this study, we analyzed Annexins in ovarian cancer using different databases and selected Annexin A8 (ANXA8), which showed the greatest prognostic value, for subsequent validation in immunohistochemical (IHC) assays. METHODS: The mRNA expression levels, genetic variations, prognostic values and gene-gene interaction network of Annexins in ovarian cancer were analyzed using the Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), cBioPortal, Kaplan-Meier plotter and GeneMANIA database. ANXA8 was selected for analyzing the biological functions and pathways of its co-expressed genes, and its correlation with immune system responses via the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and the TISIDB database, respectively. We validated the expression of ANXA8 in ovarian cancer via IHC assays and analyzed its correlation with clinicopathological parameters and prognosis. RESULTS: ANXA2/3/8/11 mRNA expression levels were significantly upregulated in ovarian cancer, and ANXA5/6/7 mRNA expression levels were significantly downregulated. Prognostic analysis suggested that significant correlations occurred between ANXA2/4/8/9 mRNA upregulation and poor overall survival, and between ANXA8/9/11 mRNA upregulation and poor progression-free survival in patients with ovarian serous tumors. Taken together, results suggested that ANXA8 was most closely associated with ovarian cancer tumorigenesis and progression. Further analyses indicated that ANXA8 may be involved in cell migration, cell adhesion, and vasculature development, as well as in the regulation of PI3K-Akt, focal adhesion, and proteoglycans. Additionally, ANXA8 expression was significantly correlated with lymphocytes and immunomodulators. The IHC results showed that ANXA8 expression was higher in the malignant tumor group than in the borderline and benign tumor groups and normal ovary group, and high ANXA8 expression was an independent risk factor for survival and prognosis of ovarian cancer patients (P = 0.013). CONCLUSIONS: Members of the Annexin family display varying degrees of abnormal expressions in ovarian cancer. ANXA8 was significantly highly expressed in ovarian cancer, and high ANXA8 expression was significantly correlated with poor prognosis. Therefore, ANXA8 is a high candidate as a novel biomarker and therapeutic target for ovarian cancer.


Subject(s)
Annexins/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Ovarian Epithelial/diagnosis , Carcinoma, Ovarian Epithelial/metabolism , Molecular Targeted Therapy , Adult , Aged , Annexins/genetics , Carcinoma, Ovarian Epithelial/drug therapy , Carcinoma, Ovarian Epithelial/genetics , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Kaplan-Meier Estimate , Middle Aged , Mutation/genetics , Neoplasm Staging , Neoplasms, Cystic, Mucinous, and Serous/diagnosis , Neoplasms, Cystic, Mucinous, and Serous/drug therapy , Neoplasms, Cystic, Mucinous, and Serous/genetics , Neoplasms, Cystic, Mucinous, and Serous/metabolism , Prognosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Risk Factors
15.
J Transl Med ; 17(1): 379, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31744495

ABSTRACT

AIM: Cervical cancer is a common malignant carcinoma of the gynecological tract with high morbidity and mortality. Therefore, it is crucial to elucidate the pathogenesis, prevention, diagnosis and prognosis of cervical cancer by searching for the involved key genes. METHOD: In this study, the alternative splicing (AS) events of 253 patients with cervical cancer were analyzed, and 41,766 AS events were detected in 9961 genes. Univariate analysis was performed to screen prognostic AS events. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to identify the pathways in which these AS events were involved. RESULTS: We found that exon skip (ES) is the main AS event in patients with cervical cancer. There was pronounced consistency between the genes involved in overall survival and those involved in recurrence. At the same time, we found that a gene may exhibit several different types of AS events, and these different AS events may be related to prognosis. Four characteristic genes, HSPA14, SDHAF2, CAMKK2 and TM9SF1, that can be used as prognostic markers for cervical cancer were selected. CONCLUSION: The importance of AS events in the development of cervical cancer and prediction of prognosis was revealed by a large amount of data at the whole genome level, which may provide a potential target for cervical cancer treatment. We also provide a new method for exploring the pathogenesis of cervical cancer to determine clinical treatment and prognosis more accurately.


Subject(s)
Alternative Splicing/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Uterine Cervical Neoplasms/genetics , Exons/genetics , Factor Analysis, Statistical , Female , Gene Regulatory Networks , Genes, Neoplasm , Humans , Kaplan-Meier Estimate , Multivariate Analysis , Neoplasm Recurrence, Local/genetics , Prognosis , Transcription, Genetic , Uterine Cervical Neoplasms/classification
16.
Cancer Cell Int ; 19: 330, 2019.
Article in English | MEDLINE | ID: mdl-31827404

ABSTRACT

BACKGROUND: Abnormal activation of the classic Wnt signaling pathway is closely related to the occurrence of epithelial cancers. B-cell lymphoma 9 (BCL9), a transcription factor, is a novel oncogene discovered in the classic Wnt pathway and promotes the occurrence and development of various tumors. Ovarian cancer is the gynecological malignant tumor with the highest mortality because it is difficult to diagnose early, and easy to relapse and metastasis. The expression and role of BCL9 in epithelial ovarian cancer (EOC) have not been studied. Thus, in this research, we aimed to investigate the expression and clinical significance of BCL9 in EOC tissues and its effect on the malignant biological behavior of human ovarian cancer cells. METHODS: We detect the expression of BCL9 in ovarian epithelial tumor tissues and normal ovarian tissues using immunohistochemistry and analyzed the relationship between it and clinicopathological parameters and patient prognosis. The expression of proteins was detected by Western blot. The MTT assay, flow cytometry, the scratch assay, and the transwell assay were used to detect cell proliferation, apoptosis, migration, and invasion, respectively. A total of 374 ovarian cancer tissue samples were collected using TCGA database. A gene set enrichment analysis of BCL9 was performed. RESULTS: BCL9 was overexpressed in EOC tissues. The level of BCL9 expression was correlated with the 5-year progression-free survival rate and overall survival rate in ovarian cancer patients and independently predicted the risk of ovarian cancer recurrence. Low BCL9 expression inhibited proliferation, invasion and migration of EOC cells, decreased MMP2 and MMP9 expression of ES-2 cell line, increased the BAX/BCL2 ratio and promoted apoptosis of EOC cells. CONCLUSION: BCL9 is overexpressed in epithelial ovarian tumors, resulting in a poor prognosis for ovarian cancer patients. Low BCL9 expression can promote ovarian cancer cell apoptosis, inhibit proliferation and migration. BCL9 promotes the development of ovarian cancer.

17.
Article in English | MEDLINE | ID: mdl-36793761

ABSTRACT

Objective: To investigate the effect of garlic extract (GE) on the proliferation and apoptosis of cell lines A549 and H1299 in lung cancer (LC). Methods: A549 and H1299 cells with well-developed logarithmic growth were added with GE at a concentration of 0 µg/ml, 25 µg/ml, 50 µg/M, 75 µg/ml, and 100 µg/ml, respectively. The inhibition of A549 cell proliferation was detected using CCK-8 after cultured for 24 h, 48 h, and 72 h. The apoptosis of A549 cells was analyzed via flow cytometry (FCM) after 24 h of cultivation. In vitro migration of A549 and H1299 cells was determined by cell wound scratch assay after 0 h and 24 h culture. The caspase-3 and caspase-9 protein expression levels in A549 and H1299 cells were evaluated through western blot after 24 h of cultivation. Results: Colony formation and EdU assays revealed that Z-ajoene could inhibit cell viability and cell proliferation in NSCLC cells. After 24 h culture, there was no significant difference in the proliferation rate of A549 and H1299 cells with different GE concentrations (P > 0.05). A remarkable proliferation rate difference emerged between A549 and H1299 cells with different GE concentrations after 48 and 72 hours of cultivation. The proliferation rate of A549 and H1299 cells in the experiment group was significantly lower than that in the control group. With an elevated level of GE concentration, the proliferation rate of A549 and H1299 cells decreased (P < 0.05) while the apoptotic rate increased continuously. Conclusion: GE could exert toxic effects on A549 and H1299 cells, inhibit cell proliferation, promote apoptosis, and attenuate cell migration. Meanwhile, it might induce apoptosis of A549 and H1299 cells through the caspase signal pathway, which is positively correlated with the mass action concentration and is expected to be a new drug for LC treatment.

18.
Oxid Med Cell Longev ; 2023: 1261039, 2023.
Article in English | MEDLINE | ID: mdl-36743693

ABSTRACT

Background: The occurrence and development of ovarian cancer (OV) are significantly influenced by increased levels of oxidative stress (OS) byproducts and the lack of an antioxidant stress repair system. Hence, it is necessary to explore the markers related to OS in OV, which can aid in predicting the prognosis and immunotherapeutic response in patients with OV. Methods: The single-cell RNA-sequencing (scRNA-seq) dataset GSE146026 was retrieved from the Gene Expression Omnibus (GEO) database, and Bulk RNA-seq data were obtained from TCGA and GTEx databases. The Seurat R package and SingleR package were used to analyze scRNA-seq and to identify OS response-related clusters based on ROS markers. The "limma" R package was used to identify the differentially expressed genes (DEGs) between normal and ovarian samples. The risk model was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. The immune cell infiltration, genomic mutation, and drug sensitivity of the model were analyzed using the CIBERSORT algorithm, the "maftools," and the "pRRophetic" R packages, respectively. Results: Based on scRNA-seq data, we identified 12 clusters; OS response-related genes had the strongest specificity for cluster 12. A total of 151 genes were identified from 2928 DEGs to be significantly correlated with OS response. Finally, nine prognostic genes were used to construct the risk score (RS) model. The risk score model was an independent prognostic factor for OV. The gene mutation frequency and tumor immune microenvironment in the high- and low-risk score groups were significantly different. The value of the risk score model in predicting immunotherapeutic outcomes was confirmed. Conclusions: OS response-related RS model could predict the prognosis and immune responses in patients with OV and provide new strategies for cancer treatment.


Subject(s)
Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Base Sequence , Biomarkers , Oxidative Stress/genetics , RNA-Seq , Biomarkers, Tumor/genetics , Tumor Microenvironment
19.
Biochem Pharmacol ; 214: 115667, 2023 08.
Article in English | MEDLINE | ID: mdl-37356630

ABSTRACT

Circular RNAs (circRNAs), a subclass of noncoding RNAs, have been demonstrated to play an essential role in osteosarcoma (OS) development. However, there is still a significant gap in investigating its biological functions and underlying molecular mechanisms, and novel targets of circRNAs have yet to be fully explored. Herein, we found that hsa_circ_0007031 is noticeably raised in OS clinical tissues and cell lines. Hsa_circ_0007031 accelerates OS cell proliferation and migration in vitro and tumor growth and metastasis in vivo and is strongly linked with the stemness of cancer stem cells in OS. Mechanistically, hsa_circ_0007031 shares miRNA response elements with Homeobox B6 (HOXB6), which is identified as a novel pro-tumorigenic gene of OS. Hsa_circ_0007031 competitively binds to miR-196a-5p to prevent miR-196a-5p from lowering the level of HOXB6, which modulates chemokines of cytokine-cytokine receptor interaction signaling pathway and finally promotes OS malignant behavior. In summary, our data unveiled that hsa_circ_0007031/miR-196a-5p/HOXB6 axis-mediated cytokine-cytokine receptor interaction facilitates the progression of OS and maintains the properties of tumor stem cells, which could be a promising therapeutic target for OS.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , Humans , RNA, Circular/genetics , RNA, Circular/metabolism , Genes, Homeobox , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Proliferation , Osteosarcoma/metabolism , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Cell Line, Tumor , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
20.
Int Immunopharmacol ; 107: 108726, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35338959

ABSTRACT

TMEFF1 is a newly discovered protein involved in the physiological functions of the central nervous system, embryonic development, and other biological processes. Our previous study revealed that TMEFF1 acts as a tumor-promoting gene in ovarian cancer. AHNAK, as a giant scaffolding protein, plays a role in the formation of the blood-brain barrier, cell architecture and the regulation of cardiac calcium channels. However, its role in ovarian cancer remains poorly researched. In this study, we detected the expression of AHNAK and TMEFF1 in 148 different ovarian cancer tissues, determined their relationship with pathological parameters and prognosis, clarified the interaction between the two proteins, and explored the related cancer-promoting mechanisms through immunohistochemistry, immunoprecipitation, immunofluorescence double staining, western blotting, and bioinformatics. The high expression of ANHAK and TMEFF1 in ovarian cancer indicated a higher degree of tumor malignancy and a worse prognosis. Furthermore, the expression of TMEFF1 and AHNAK was significantly positively correlated. The results also showed that AHNAK and TMEFF1 co-localized and interacted with each other in ovarian cancer tissues and cells. And knockdown of AHNAK promoted proliferation, migration and invasion of ovarian cancer cells in vitro. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that AHNAK and related genes were enriched during mitosis regulation, cytoskeleton formation, gene epigenetics, etc., whereas TMEFF1 and related genes are enriched during immune regulation and other processes. We also clarified the network of kinases, microRNA, and transcription factor targets, and the impact of genetic mutations on prognosis. Notably, AHNAK was regulated by the expression of TMEFF1 and can activate the MAPK pathways. Overall, high expression of AHNAK and TMEFF1 in ovarian cancer cells indicated a higher degree of tumor malignancy and a worse prognosis. Therefore, the interaction between AHNAK and TMEFF1 may become a potential anti-tumor target for ovarian cancer treatment.


Subject(s)
Ovarian Neoplasms , Computational Biology , Female , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Ovarian Neoplasms/genetics , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL