Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Am Chem Soc ; 146(6): 4153-4161, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38300827

ABSTRACT

Separating ethane (C2H6) from ethylene (C2H4) is an essential and energy-intensive process in the chemical industry. Here, we report two flexible diamondoid coordination networks, X-dia-1-Ni and X-dia-1-Ni0.89Co0.11, that exhibit gate-opening between narrow-pore (NP) and large-pore (LP) phases for C2H6, but not for C2H4. X-dia-1-Ni0.89Co0.11 thereby exhibited a type F-IV isotherm at 273 K with no C2H6 uptake and a high uptake (111 cm3 g-1, 1 atm) for the NP and LP phases, respectively. Conversely, the LP phase exhibited a low uptake of C2H4 (12.2 cm3 g-1). This C2H6/C2H4 uptake ratio of 9.1 for X-dia-1-Ni0.89Co0.11 far surpassed those of previously reported physisorbents, many of which are C2H4-selective. In situ variable-pressure X-ray diffraction and modeling studies provided insight into the abrupt C2H6-induced structural NP to LP transformation. The promise of pure gas isotherms and, more generally, flexible coordination networks for gas separations was validated by dynamic breakthrough studies, which afforded high-purity (99.9%) C2H4 in one step.

2.
Small ; 20(23): e2308005, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38148319

ABSTRACT

The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g-1 h-1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible-light conditions.

3.
Angew Chem Int Ed Engl ; 61(33): e202207066, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35674195

ABSTRACT

In the electronics industry, the efficient recovery and capture of sulfur hexafluoride (SF6 ) from SF6 /N2 mixtures is of great importance. Herein, three metal-organic frameworks with fine-tuning pore structures, Cu(peba)2 , Ni(pba)2 , and Ni(ina)2 , were designed for SF6 capture. Among them, Ni(ina)2 has perfect pore sizes (6 Å) that are comparable to the kinetic diameter of sulfur hexafluoride (5.2 Å), affording the benchmark binding affinity for SF6 gas. Ni(ina)2 exhibits the highest SF6 /N2 selectivity (375.1 at 298 K and 1 bar) and ultra-high SF6 uptake capacity (53.5 cm3 g-1 at 298 K and 0.1 bar) at ambient conditions. The remarkable separation performance of Ni(ina)2 was verified by dynamic breakthrough experiments. Theoretical calculations and the SF6 -loaded single-crystal structure provided critical insight into the adsorption/separation mechanism. This porous coordination network has the potential to be used in industrial applications.

4.
ACS Appl Mater Interfaces ; 16(25): 32271-32281, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38868898

ABSTRACT

Visible-light-driven conversion of carbon dioxide to valuable compounds and fuels is an important but challenging task due to the inherent stability of the CO2 molecules. Herein, we report a series of cobalt-based polymerized porphyrinic network (PPN) photocatalysts for CO2 reduction with high activity. The introduction of organic groups results in the addition of more conjugated electrons to the networks, thereby altering the molecular orbital levels within the networks. This integration of functional groups effectively adjusts the levels of the lowest unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO). The PPN(Co)-NO2 exhibits outstanding performance, with a CO evolution rate of 12 268 µmol/g/h and 85.8% selectivity, surpassing most similar photocatalyst systems. The performance of PPN(Co)-NO2 is also excellent in terms of apparent quantum yield (AQY) for CO production (5.7% at 420 nm). Density functional theory (DFT) calculations, time-resolved photoluminescence (TRPL), and electrochemical tests reveal that the introduction of methyl and nitro groups leads to a narrower energy gap, facilitating a faster charge transfer. The coupling reaction in this study enables the formation of stable C-C bonds, enhancing the structural regulation, active site diversity, and stability of the catalysts for photocatalytic CO2 reduction. This work offers a facile strategy to develop reliable catalysts for efficient CO2 conversion.

SELECTION OF CITATIONS
SEARCH DETAIL