Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Acta Pharmacol Sin ; 45(2): 378-390, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798352

ABSTRACT

Reinforced cellular responses to endoplasmic reticulum (ER) stress are caused by a variety of pathological conditions including cancers. Human rhomboid family-1 protein (RHBDF1), a multiple transmembrane protein located mainly on the ER, has been shown to promote cancer development, while the binding immunoglobulin protein (BiP) is a key regulator of cellular unfolded protein response (UPR) for the maintenance of ER protein homeostasis. In this study, we investigated the role of RHBDF1 in maintaining ER protein homeostasis in breast cancer cells. We showed that deleting or silencing RHBDF1 in breast cancer cell lines MCF-7 and MDA-MB-231 caused marked aggregation of unfolded proteins in proximity to the ER. We demonstrated that RHBDF1 directly interacted with BiP, and this interaction had a stabilizing effect on the BiP protein. Based on the primary structural motifs of RHBDF1 involved in BiP binding, we found a pentapeptide (PE5) targeted BiP and inhibited BiP ATPase activity. SPR assay revealed a binding affinity of PE5 toward BiP (Kd = 57.7 µM). PE5 (50, 100, 200 µM) dose-dependently promoted ER protein aggregation and ER stress-mediated cell apoptosis in MCF-7 and MDA-MB-231 cells. In mouse 4T1 breast cancer xenograft model, injection of PE5 (10 mg/kg, s.c., every 2 days for 2 weeks) significantly inhibited the tumor growth with markedly increased ER stress and apoptosis-related proteins in tumor tissues. Our results suggest that the ability of RHBDF1 to maintain BiP protein stability is critical to ER protein homeostasis in breast cancer cells, and that the pentapeptide PE5 may serve as a scaffold for the development of a new class of anti-BiP inhibitors.


Subject(s)
Breast Neoplasms , Carrier Proteins , Humans , Animals , Mice , Female , Carrier Proteins/metabolism , Breast Neoplasms/drug therapy , Endoplasmic Reticulum Stress , Apoptosis , Unfolded Protein Response , Apoptosis Regulatory Proteins/metabolism , Immunoglobulins/metabolism , Membrane Proteins/metabolism
2.
Neurosci Lett ; 460(2): 175-9, 2009 Aug 28.
Article in English | MEDLINE | ID: mdl-19450658

ABSTRACT

It is known that the anterior cingulate cortex (ACC) is involved in the formation of contextual fear memory. It has been shown that the ACC is important for the retrieval of long-term contextual fear memory. In order to further examine the role of the ACC in fear memory, we investigated the effects of chemical lesion to or reversible inactivation of the ACC on the retrieval of long-term and short-term step-through inhibitory avoidance (IA) memory. Chemical lesion to the ACC by quinolinic acid severely impaired the retrieval of 15-day and 29-day memories for one-trial step-through IA. Pre-retrieval inactivation of the ACC by locally infusing muscimol, a selective GABA(A) receptor agonist, produced a severe deficit in 7-day, 4-day and 1-day IA memories, with no effect on 2-h and 6-h memories. Thus, the ACC is required for the retrieval of long-term/long-lasting IA memory, but is dispensable for short-term one.


Subject(s)
Avoidance Learning/physiology , Gyrus Cinguli/physiology , Memory, Short-Term/physiology , Mental Recall/physiology , Neural Inhibition/physiology , Animals , Avoidance Learning/drug effects , Behavior, Animal , GABA Agonists/pharmacology , Gyrus Cinguli/drug effects , Gyrus Cinguli/injuries , Male , Memory, Short-Term/drug effects , Mental Recall/drug effects , Muscimol/pharmacology , Neural Inhibition/drug effects , Quinolinic Acid/toxicity , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL