Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
BMC Genomics ; 18(1): 351, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28476147

ABSTRACT

BACKGROUND: Auxin/indole-3-acetic acid (Aux/IAA) family genes encode short-lived nuclear proteins that mediate the responses of auxin-related genes and are involved in several plant developmental and growth processes. However, how Aux/IAA genes function in the fruit development and ripening of papaya (Carica papaya L.) is largely unknown. RESULTS: In this study, a comprehensive identification and a distinctive expression analysis of 18 C. papaya Aux/IAA (CpIAA) genes were performed using newly updated papaya reference genome data. The Aux/IAA gene family in papaya is slightly smaller than that in Arabidopsis, but all of the phylogenetic subfamilies are represented. Most of the CpIAA genes are responsive to various phytohormones and expressed in a tissues-specific manner. To understand the putative biological functions of the CpIAA genes involved in fruit development and ripening, quantitative real-time PCR was used to test the expression profiling of CpIAA genes at different stages. Furthermore, an IAA treatment significantly delayed the ripening process in papaya fruit at the early stages. The expression changes of CpIAA genes in ACC and 1-MCP treatments suggested a crosstalk between auxin and ethylene during the fruit ripening process of papaya. CONCLUSIONS: Our study provided comprehensive information on the Aux/IAA family in papaya, including gene structures, phylogenetic relationships and expression profiles. The involvement of CpIAA gene expression changes in fruit development and ripening gives us an opportunity to understand the roles of auxin signaling in the maturation of papaya reproductive organs.


Subject(s)
Carica/growth & development , Carica/genetics , Fruit/growth & development , Genomics , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Amino Acid Sequence , Genome, Plant/genetics , Phylogeny , Plant Proteins/chemistry , Plant Proteins/metabolism , Promoter Regions, Genetic/genetics
2.
BMC Plant Biol ; 17(1): 170, 2017 Oct 23.
Article in English | MEDLINE | ID: mdl-29061115

ABSTRACT

BACKGROUND: Sugar apple (Annona squamosa L.), a popular fruit with high medicinal and nutritional properties, is widely cultivated in tropical South Asia and America. The malformed flower is a major cause for a reduction in production of sugar apple. However, little information is available on the differences between normal and malformed flowers of sugar apple. RESULTS: To gain a comprehensive perspective on the differences between normal and malformed flowers of sugar apple, cDNA libraries from normal and malformation flowers were prepared independently for Illumina sequencing. The data generated a total of 70,189,896 reads that were integrated and assembled into 55,097 unigenes with a mean length of 783 bp. A large number of differentially expressed genes (DEGs) were identified. Among these DEGs, 701 flower development-associated transcript factor encoding genes were included. Furthermore, a large number of flowering- and hormone-related DEGs were also identified, and most of these genes were down-regulated expressed in the malformation flowers. The expression levels of 15 selected genes were validated using quantitative-PCR. The contents of several endogenous hormones were measured. The malformed flowers displayed lower endogenous hormone levels compared to the normal flowers. CONCLUSIONS: The expression data as well as hormone levels in our study will serve as a comprehensive resource for investigating the regulation mechanism involved in floral organ development in sugar apple.


Subject(s)
Annona/growth & development , Flowers/growth & development , Annona/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genes, Plant/genetics , Genes, Plant/physiology , Real-Time Polymerase Chain Reaction
3.
Biomed Res Int ; 2020: 5867673, 2020.
Article in English | MEDLINE | ID: mdl-33062686

ABSTRACT

In the Combretaceae family, only two species of Lumnitzera and one species of Laguncularia belong to mangroves. Among them, Lumnitzera littorea (Jack) Voigt. is an endangered mangrove plant in China for the limited occurrence and seed abortion. In contrast, Lumnitzera racemosa Willd. is known as the most widespread mangrove plant in China. Laguncularia racemosa C. F. Gaertn., an exotic mangrove in China, has the fast growth and high adaptation ability. To better understand the phylogenetic positions of these mangroves in Combretaceae and in Myrtales and to provide information for studies on evolutionary adaptation for intertidal habitat, the complete chloroplast (cp) genomes of Lu. racemosa and La. racemosa were sequenced. Furthermore, we present here the results from the assembly and annotation of the two cp genomes, which were further subjected to the comparative analysis with Lu. littorea cp genomes we published before and other eleven closely related species within Myrtales. The chloroplast genomes of the three Combretaceae mangrove species: Lu. littorea, Lu. racemosa, and La. racemosa are 159,687 bp, 159,473 bp, and 158,311 bp in size. All three cp genomes host 130 genes including 85 protein-coding genes, 37 tRNAs, and 4 rRNAs. A comparative analysis of those three genomes revealed the high similarity of genes in coding-regions and conserved gene order in the IR and LSC/SSC regions. The differences between Lumnitzera and Laguncularia cp genomes are the locations of rps19 and rpl2 genes in the IR/SC boundary regions. Investigating the effects of selection events on shared protein-coding genes showed a relaxed selection had acted on the ycf2, ycf1, and matK genes of Combretaceae mangroves compared to the nonmangrove species Eucalyptus aromaphloia. The phylogenetic analysis based on the whole chloroplast genome sequence with one outgroup species strongly supported three Combretaceae mangroves together with other two Combretaceae species formed a cluster in Combretaceae. This study is the first report on the comparative analysis of three Combretaceae mangrove chloroplast genomes, which will provide the significant information for understanding photosynthesis and evolution in Combretaceae mangrove plants.


Subject(s)
Combretaceae/classification , Combretaceae/genetics , Genome, Chloroplast/genetics , Genome, Plant/genetics , Computational Biology , DNA, Plant/analysis , DNA, Plant/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
4.
Front Plant Sci ; 7: 1695, 2016.
Article in English | MEDLINE | ID: mdl-27881993

ABSTRACT

Sugar apple (Annona squamosa L.) is a semi-deciduous subtropical tree that progressively sheds its leaves in the spring. However, little information is available on the mechanism involved in flower developmental pattern. To gain a global perspective on the floral transition and flower development of sugar apple, cDNA libraries were prepared independently from inflorescent meristem and three flowering stages. Illumina sequencing generated 107,197,488 high quality reads that were assembled into 71,948 unigenes, with an average sequence length of 825.40 bp. Among the unigenes, various transcription factor families involved in floral transition and flower development were elucidated. Furthermore, a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that unigenes exhibiting differential expressions were involved in various phytohormone signal transduction events and circadian rhythms. In addition, 147 unigenes exhibiting sequence similarities to known flowering-related genes from other plants were differentially expressed during flower development. The expression patterns of 20 selected genes were validated using quantitative-PCR. The expression data presented in our study is the most comprehensive dataset available for sugar apple so far and will serve as a resource for investigating the genetics of the flowering process in sugar apple and other Annona species.

5.
Front Plant Sci ; 7: 1555, 2016.
Article in English | MEDLINE | ID: mdl-27812360

ABSTRACT

Auxin plays essential roles in plant development. Gretchen Hagen 3 (GH3) genes belong to a major auxin response gene family and GH3 proteins conjugate a range of acylsubstrates to alter the levels of hormones. Currently, the role of GH3 genes in postharvest physiological regulation of ripening and softening processes in papaya fruit is unclear. In this study, we identified seven CpGH3 genes in a papaya genome database. The CpGH3.1a, CpGH3.1b, CpGH3.5, CpGH3.6, and CpGH3.9 proteins were identified as indole-3-acetic acid (IAA)-specific amido synthetases. We analyzed the changes in IAA-amido synthetase activity using aspartate as a substrate for conjugation and found a large increase (over 5-fold) during the postharvest stages. Ascorbic acid (AsA) application can extend the shelf life of papaya fruit. Our data showed that AsA treatment regulates postharvest fruit maturation processes by promoting endogenous IAA levels. Our findings demonstrate the important role of GH3 genes in the regulation of auxin-associated postharvest physiology in papaya.

SELECTION OF CITATIONS
SEARCH DETAIL