Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Carcinogenesis ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38869064

ABSTRACT

Nucleotide metabolism is the ultimate and most critical link in the self-replication process of tumors, including gastric cancer (GC). However, in clinical treatment, classic anti-tumor drugs such as 5-fluorouracil (5-FU) are mostly metabolic analogues of purines or pyrimidines, which lack specificity for tumor cells and therefore have significant side effects. It is unclear whether there are other drugs that can target nucleotide metabolism, except for nucleic acid analogues. Here, we found that a natural compound, dehydroabietylamine (DHAA), significantly reduced the viability and proliferation of GC cells and organoids. DHAA disrupts purine and pyrimidine metabolism of GC cells, causing DNA damage and further inducing apoptosis. DHAA treatment decreased transcription and protein levels of key enzymes involved in nucleotide metabolism pathway, with significant reductions in the expression of pyrimidine metabolism key enzymes CAD, DHODH, and purine metabolism key enzymes PAICS. We also found that DHAA directly binds to and reduces the expression of Forkhead box K2 (FOXK2), a common transcription factor for these metabolic enzymes. Ultimately, DHAA was shown to delay tumorigenesis in K19-Wnt1/C2mE transgenic mice model and reduce levels of CAD, DHODH, and PAICS in vivo. We demonstrate that DHAA exerts an anticancer effect on GC by targeting transcription factor FOXK2, reducing transcription of key genes for nucleotide metabolism and impairing nucleotide biosynthesis, thus DHAA is a promising candidate for GC therapy.

2.
EMBO J ; 39(5): e102541, 2020 03 02.
Article in English | MEDLINE | ID: mdl-31975428

ABSTRACT

UHMK1 is a nuclear serine/threonine kinase recently implicated in carcinogenesis. However, the functions and action mechanisms of UHMK1 in the pathogenesis of human gastric cancer (GC) are unclear. Here, we observed that UHMK1 was markedly upregulated in GC. UHMK1 silencing strongly inhibited GC aggressiveness. Interestingly, UHMK1-induced GC progression was mediated primarily via enhancing de novo purine synthesis because inhibiting purine synthesis reversed the effects of UHMK1 overexpression. Mechanistically, UHMK1 activated ATF4, an important transcription factor in nucleotide synthesis, by phosphorylating NCOA3 at Ser (S) 1062 and Thr (T) 1067. This event significantly enhanced the binding of NCOA3 to ATF4 and the expression of purine metabolism-associated target genes. Conversely, deficient phosphorylation of NCOA3 at S1062/T1067 significantly abrogated the function of UHMK1 in GC development. Clinically, Helicobacter pylori and GC-associated UHMK1 mutation induced NCOA3-S1062/T1067 phosphorylation and enhanced the activity of ATF4 and UHMK1. Importantly, the level of UHMK1 was significantly correlated with the level of phospho-NCOA3 (S1062/T1067) in human GC specimens. Collectively, these results show that the UHMK1-activated de novo purine synthesis pathway significantly promotes GC development.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Nuclear Receptor Coactivator 3/metabolism , Nucleotides/metabolism , Protein Serine-Threonine Kinases/metabolism , Stomach Neoplasms/genetics , Animals , Cell Line, Tumor , Disease Progression , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Mice , Mice, Inbred BALB C , Nuclear Receptor Coactivator 3/genetics , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Stomach/pathology , Stomach Neoplasms/pathology , Up-Regulation
3.
Int J Med Sci ; 21(1): 70-79, 2024.
Article in English | MEDLINE | ID: mdl-38164353

ABSTRACT

Purpose: The high tumor mutational burden (TMB) of transformed follicular lymphoma (tFL) leads to tumor heterogeneity and poor prognosis in follicular lymphoma, in which endogenous DNA damage and epigenetic modification are the key factors. This study aims to evaluate the efficacy of anlotinib in tFL and to investigate its potential therapeutic mechanism. Methods: Cell viability and apoptosis were tested with CCK-8 and annexin V/PI staining kits, respectively. The tumorigenicity test in mice was utilized to further confirm the efficacy of anlotinib in vivo. Western blotting was utilized to explore the molecular mechanisms. Results: Anlotinib induced G2/M phase arrest in tFL cells, inhibited the proliferation of tFL cells and promoted the apoptosis of tFL cells in a dose-dependent manner. Administration of anlotinib markedly reduced tumor mass and weight in an FL xenograft mouse model. The western blot and immunohistochemistry staining results confirmed that the mechanism by which anlotinib promoted tumor cell apoptosis was DNA damage. Further results showed that anlotinib significantly downregulated the expression of SETD1A, leading to its destruction. Anlotinib administration resulted in a significant dose-dependent increase in the level of p-p53. Furthermore, anlotinib greatly downregulated the antiapoptotic proteins Mcl-1 and in parallel upregulated the proapoptotic element BAX and Bak, accompanied by caspase-3 activation and PARP degradation. Conclusion: Anlotinib has a good proapoptotic effect on tumor cells in vitro and in vivo, and its possible mechanism is related to the inhibition of the DNA damage response by disrupting SETD1A.


Subject(s)
Lymphoma, Follicular , Humans , Animals , Mice , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cell Line, Tumor , Neoplasm Recurrence, Local , Apoptosis , DNA Repair , Cell Proliferation
4.
Int J Toxicol ; 42(5): 386-406, 2023.
Article in English | MEDLINE | ID: mdl-37271574

ABSTRACT

Transformed follicular lymphoma (t-FL) is an aggressive malignancy that is refractory and rapidly progressing with poor prognosis. There is currently no effective treatment. High-throughput screening (HTS) platforms are used to profile the sensitivity or toxicity of hundreds of drug molecules, and this approach is applied to identify potential effective treatments for t-FL. We randomly selected a compound panel from the School of Pharmaceutical Sciences Xiamen University, tested the effects of the panel on the activity of t-FL cell lines using HTS and the CCK-8 assay, and identified compounds showing synergistic anti-proliferative activity with the Bcl-2 inhibitor venetoclax (ABT-199). Bioinformatics tools were used to analyze the potential synergistic mechanisms. The single-concentration compound library demonstrated varying degrees of activity across the t-FL cell lines evaluated, of which the Karpas422 cells were the most sensitive, but it was the cell line with the least synergy with ABT-199. We computationally identified 30 drugs with synergistic effects in all cell lines. Molecularly, we found that the targets of these 30 drugs didn't directly regulate Bcl-2 and identified 13 medications with high evidence value above .9 of coordination with ABT-199, further confirming TP53 may play the largest role in the synergistic effect. Collectively, these findings identified the combined regimens of ABT-199 and further suggested that the mechanism is far from directly targeting Bcl-2, but rather through the regulation and synergistic action of p53 and Bcl-2. This study intended to reveal the best synergistic scheme of ABT-199 through HTS to more quickly inform the treatment of t-FL.


Subject(s)
Antineoplastic Agents , Lymphoma, Follicular , Humans , Lymphoma, Follicular/drug therapy , Cell Line, Tumor , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/pharmacology , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Antineoplastic Agents/pharmacology , Apoptosis , Drug Synergism
5.
Cancer Control ; 29: 10732748221081369, 2022.
Article in English | MEDLINE | ID: mdl-35220799

ABSTRACT

INTRODUCTION: The PER2 (Period circadian regulator 2) gene is related to the circadian clock, and it has been deemed as a suppressor gene in osteosarcoma and lung carcinoma. However, the part of PER2 in CRC (colorectal cancer) needs to be further determined. METHODS: First, we collected clinical samples to detect PER2 expression in CRC. Then, we used cell transfection to knock down PER2 expression in CRC cell lines and performed a series of functional experiments to elucidate the effects of PER2 on CRC cells. We next verified whether PER2 affects the epithelial-mesenchymal transformation (EMT) process in CRC by conducting quantitative real-time PCR and western blotting. RESULTS: In the research, we revealed that the expression of PER2 decreased in CRC clinical samples. In addition, knocking down PER2 expression caused CRC cells to acquire malignant biological features. Finally, we found that PER2 knockdown may activate the Snail/Slug axis through inhibiting p53, therefore promote the activation of the EMT pathway. CONCLUSION: In conclusion, low PER2 expression reinforces migration and activates EMT in CRC, suggesting that PER2 is closely related to CRC development and could be used as a potential treatment site in the clinic.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Cell Line, Tumor , Cell Movement , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Humans
6.
Biotechnol Appl Biochem ; 69(1): 190-197, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33393679

ABSTRACT

Ferroptosis is a regulated cell death pathway based on the deposition of lipid-based reactive oxygen species (L-ROS) in the presence of iron ions. The term was first coined in 2012 by Dixon. Decreased glutathione (GSH) synthesis and low glutathione-dependent antioxidant peroxidase 4 (GPX4) activity are the major causes of ferroptosis. Sensitivity to ferroptosis for example in tumor cells may be further enhanced by high cellular iron concentrations and/or high p53 levels. Therefore, driving ferroptosis in tumor cells could be a new way to treat tumors. Thus far, natural products have played considerable roles in antitumor research and treatment, and some drugs, such as paclitaxel, have proven beneficial in many cancer patients. According to current research, natural products can induce ferroptosis when used alone or in conjunction with other cancer therapies. This review mainly elaborates the main mechanism of ferroptosis and the regulating effects of some natural products on ferroptosis, aiming to create a new space for the research and development of novel anticancer drugs.


Subject(s)
Antineoplastic Agents , Biological Products , Ferroptosis , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biological Products/pharmacology , Humans , Neoplasms/drug therapy , Reactive Oxygen Species
7.
Cancer Cell Int ; 21(1): 668, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34906153

ABSTRACT

BACKGROUND: Metabolic reprogramming has been reported in various kinds of cancers and is related to clinical prognosis, but the prognostic role of pyrimidine metabolism in gastric cancer (GC) remains unclear. METHODS: Here, we employed DEG analysis to detect the differentially expressed genes (DEGs) in pyrimidine metabolic signaling pathway and used univariate Cox analysis, Lasso-penalizes Cox regression analysis, Kaplan-Meier survival analysis, univariate and multivariate Cox regression analysis to explore their prognostic roles in GC. The DEGs were experimentally validated in GC cells and clinical samples by quantitative real-time PCR. RESULTS: Through DEG analysis, we found NT5E, DPYS and UPP1 these three genes are highly expressed in GC. This conclusion has also been verified in GC cells and clinical samples. A prognostic risk model was established according to these three DEGs by Univariate Cox analysis and Lasso-penalizes Cox regression analysis. Kaplan-Meier survival analysis suggested that patient cohorts with high risk score undertook a lower overall survival rate than those with low risk score. Stratified survival analysis, Univariate and multivariate Cox regression analysis of this model confirmed that it is a reliable and independent clinical factor. Therefore, we made nomograms to visually depict the survival rate of GC patients according to some important clinical factors including our risk model. CONCLUSION: In a word, our research found that pyrimidine metabolism is dysregulated in GC and established a prognostic model of GC based on genes differentially expressed in pyrimidine metabolism.

8.
J Nanobiotechnology ; 19(1): 350, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34717646

ABSTRACT

BACKGROUND: Nanoscale drug delivery systems have emerged as broadly applicable approach for chemo-photothermal therapy. However, these nanoscale drug delivery systems suffer from carrier-induced toxicity, uncontrolled drug release and low drug carrying capacity issues. Thus, to develop carrier-free nanoparticles self-assembled from amphiphilic drug molecules, containing photothermal agent and anticancer drug, are very attractive. RESULTS: In this study, we conjugated camptothecin (CPT) with a photothermal agent new indocyanine green (IR820) via a redox-responsive disulfide linker. The resulting amphiphilic drug-drug conjugate (IR820-SS-CPT) can self-assemble into nanoparticles (IR820-SS-CPT NPs) in aqueous solution, thus remarkably improving the membrane permeability of IR820 and the aqueous solubility of CPT. The disulfide bond in the IR820-SS-CPT NPs could be cleaved in GSH rich tumor microenvironment, leading to the on demand release of the conjugated drug. Importantly, the IR820-SS-CPT NPs displayed an extremely high therapeutic agent loading efficiency (approaching 100%). Besides, in vitro experimental results indicated that IR820-SS-CPT NPs displayed remarkable tumor cell killing efficiency. Especially, the IR820-SS-CPT NPs exhibited excellent anti-tumor effects in vivo. Both in vitro and in vivo experiments were conducted, which have indicated that the design of IR820-SS-CPT NPs can provide an efficient nanotherapeutics for chemo-photothermal therapy. CONCLUSION: A novel activatable amphiphilic small molecular prodrug IR820-SS-CPT has been developed in this study, which integrated multiple advantages of GSH-triggered drug release, high therapeutic agent content, and combined chemo-photothermal therapy into one drug delivery system.


Subject(s)
Camptothecin/administration & dosage , Camptothecin/chemistry , Drug Delivery Systems/methods , Nanoparticles/chemistry , Photothermal Therapy/methods , Prodrugs/chemistry , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Liberation , Female , Humans , Indocyanine Green , Mice , Mice, Inbred BALB C , Mice, Nude , Phototherapy , Solubility
9.
Hepatology ; 70(5): 1785-1803, 2019 11.
Article in English | MEDLINE | ID: mdl-31066068

ABSTRACT

Cancer cells metabolize different energy sources to generate biomass rapidly. The purine biosynthetic pathway was recently identified as an important source of metabolic intermediates for these processes. However, very little was known about the regulatory mechanisms of purine metabolism in hepatocellular carcinoma (HCC). We explored the role of dual-specificity tyrosine (Y) phosphorylation-regulated kinase 3 (Dyrk3) in HCC metabolism. Dyrk3 was significantly down-regulated in HCC compared with normal controls. Its introduction in HCC cells markedly suppressed tumor growth and metastasis in xenograft tumor models. Mass spectrometric analysis of metabolites suggests that the effect of Dyrk3 on HCC occurred at least partially through down-regulating purine metabolism, as evidenced by the fact that inhibiting purine synthesis reverted the HCC progression mediated by the loss of Dyrk3. We further provide evidence that this action of Dyrk3 knockdown requires nuclear receptor coactivator 3 (NCOA3), which has been shown to be a coactivator of activating transcription factor 4 (ATF4) to target purine pathway genes for transcriptional activation. Mechanistically, Dyrk3 directly phosphorylated NCOA3 at Ser-1330, disrupting its binding to ATF4 and thereby causing the inhibition of ATF4 transcriptional activity. However, the phosphorylation-resistant NCOA3-S1330A mutant has the opposite effect. Interestingly, the promoter activity of Dyrk3 was negatively regulated by ATF4, indicating a double-negative feedback loop. Importantly, levels of Dyrk3 and phospho-NCOA3-S1330 inversely correlate with the expression of ATF4 in human HCC specimens. Conclusion: Our findings not only illustrate a function of Dyrk3 in reprograming HCC metabolism by negatively regulating NCOA3/ATF4 transcription factor complex but also identify NCOA3 as a phosphorylation substrate of Dyrk3, suggesting the Dyrk3/NCOA3/ATF4 axis as a potential candidate for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/physiology , Protein-Tyrosine Kinases/physiology , Purines/metabolism , Activating Transcription Factor 4/metabolism , Disease Progression , Humans , Nuclear Receptor Coactivator 3/metabolism , Phosphorylation , Tumor Cells, Cultured
10.
Curr Med Sci ; 44(2): 298-308, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38619682

ABSTRACT

OBJECTIVE: In B-cell acute lymphoblastic leukemia (B-ALL), current intensive chemotherapies for adult patients fail to achieve durable responses in more than 50% of cases, underscoring the urgent need for new therapeutic regimens for this patient population. The present study aimed to determine whether HZX-02-059, a novel dual-target inhibitor targeting both phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) and tubulin, is lethal to B-ALL cells and is a potential therapeutic for B-ALL patients. METHODS: Cell proliferation, vacuolization, apoptosis, cell cycle, and in-vivo tumor growth were evaluated. In addition, Genome-wide RNA-sequencing studies were conducted to elucidate the mechanisms of action underlying the anti-leukemia activity of HZX-02-059 in B-ALL. RESULTS: HZX-02-059 was found to inhibit cell proliferation, induce vacuolization, promote apoptosis, block the cell cycle, and reduce in-vivo tumor growth. Downregulation of the p53 pathway and suppression of the phosphoinositide 3-kinase (PI3K)/AKT pathway and the downstream transcription factors c-Myc and NF-κB were responsible for these observations. CONCLUSION: Overall, these findings suggest that HZX-02-059 is a promising agent for the treatment of B-ALL patients resistant to conventional therapies.


Subject(s)
Precursor Cell Lymphoblastic Leukemia-Lymphoma , Tubulin , Humans , Cell Proliferation , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Tubulin/metabolism , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use
11.
Gene ; 856: 147110, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36543308

ABSTRACT

Optimizing prognostic stratification of patients with cytogenetic normal acute myeloid leukemia (CN-AML), a highly heterogeneous subgroup in AML, appears to be important to improve its treatment and clinical outcome. Here, we report a potential role of ELL, a gene associated with leukemogenesis in AML, in prognostic stratification of CN-AML patients. By analyzing public available databases, we found that ELL was highly expressed in AML patients compared with healthy donors. Kaplan-Meier analysis revealed that ELL expression markedly correlated with short overall survival (OS) of CN-AML patients. In COX multivariable regression analysis, higher ELL expression was an independent prognostic factor for OS in CN-AML. Knockdown of ELL by shRNAs sensitized KG-1α cells to anti-leukemic agents such as idarubicin (IDA) and chidamide (CS055), supporting its role in therapeutic response and outcome in AML. To understand its function in CN-AML, we further analyzed the ELL-driving gene signature. ELL-related genes were particularly enriched in cell adhesion molecules, cell differentiation, pathways in cancer, sequence-specific DNA binding, and extracellular matrix (ECM)-receptor interaction. Analysis of the PPI network identified 25 hub genes, including the stem cell gene BMP4. While BMP4 expression was significantly associated with ELL in CN-AML, knockdown of ELL markedly down-regulated BMP4 expression, suggesting that ELL might function via regulating BMP4 in AML. Together, these observations suggest a novel mechanism underlying pro-leukemogenic role of ELL via BMP4 up-regulation in AML and its potential value to serve as a predictive biomarker for therapeutic response and outcome of CN-AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Cytogenetics , Cytogenetic Analysis , Transcriptional Elongation Factors/genetics
12.
Discov Oncol ; 14(1): 118, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37392305

ABSTRACT

Refractory or relapsed (R/R) AML is the most challenging form of AML to treat. Due to frequent genetic mutations, therapy alternatives are limited. Here, we identified the role of ritanserin and its target DGKα in AML. Several AML cell lines and primary patient cells were treated with ritanserin and subjected to cell proliferation, apoptosis and gene analyses with CCK-8 assay, Annexin V/PI assay and Western blotting, respectively. We also evaluated the function of the ritanserin target diacylglycerol kinase alpha (DGKα) in AML by bioinformatics. In vitro experiments have revealed that ritanserin inhibits AML progression in a dose- and time-dependent manner, and it shows an anti-AML effect in xenograft mouse models. We further demonstrated that the expression of DGKα was elevated in AML and correlated with poor survival. Mechanistically, ritanserin negatively regulates SphK1 expression through PLD signaling, also inhibiting the Jak-Stat and MAPK signaling pathways via DGKα. These findings suggest that DGKα may be an available therapeutic target and provide effective preclinical evidence of ritanserin as a promising treatment for AML.

13.
J Cancer Res Clin Oncol ; 149(9): 5513-5529, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36471019

ABSTRACT

PURPOSE: Double-hit lymphoma (DHL) is a rare and aggressive mature B-cell malignancy with concurrent MYC and BCL2 rearrangements. When DHL becomes relapsed or refractory, it becomes resistant to the majority of therapeutic approaches and has subpar clinical results. Therefore, innovative therapeutics for this particular patient population are urgently needed. METHODS: Orelabrutinib, a new oral BTK inhibitor, combined with the Bcl-2 inhibitor venetoclax, was used to confirm the antitumor effect of DHL. Cell counting kit-8 and Annexin V-FITC/PI assays were used to examine the interaction of this combined regimen on DHL cell lines and primary lymphoma cells. RNA sequencing, EdU incorporation assay, mitochondrial membrane potential assay, and western blotting were employed to explore the molecule mechanism for the cytotoxicity of orelabrutinib with or without venetoclax against DHL cell lines. RESULTS: In this study, orelabrutinib combined with venetoclax synergistically induced DHL cell death, as evidenced by the inhibition of cell proliferation, the induct of cell cycle arrest, and the promotion of cell apoptosis via the mitochondrial pathway. Orelabrutinib treatment alters genome-wide gene expression in DHL cells. The combined regimen decreases the expression of BTK and Mcl-1, potentially interfering with the activity and crosstalk of PI3K/AKT signaling and p38/MAPK signaling. In addition, the combination of orelabrutinib and venetoclax shows cytotoxic activity in primary B-lymphoma cells. CONCLUSION: In summary, these findings reveal a novel therapy targeting BCR signaling and the Bcl-2 family for DHL patients with a poor prognosis.


Subject(s)
Antineoplastic Agents , Lymphoma, Large B-Cell, Diffuse , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Lymphoma, Large B-Cell, Diffuse/drug therapy , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , MAP Kinase Signaling System/drug effects , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-myc/genetics
14.
Cancer Lett ; 554: 215997, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36396101

ABSTRACT

Treatment of acute myeloid leukemia (AML) with chemotherapeutic agents fails to eliminate leukemia stem cells (LSC),and thus patients remain at high risk for relapse. Therefore, the identification of agents that target LSC is an important consideration for the development of new therapies. Enhanced glycolysis in LSC contributes to the aggressiveness of AML, which is difficult to be targeted. In this study, we showed that targeting peroxisome-proliferator-activated receptor α (PPARα), a ligand-activated transcription factor by chiglitazar provided a promising therapeutic approach. We first identified that chiglitazar reduced cell viability and proliferation of the leukemia stem-like cells population in AML. Treatment with chiglitazar blocked the ubiquitination of PPARα and increased its expression, resulting in the inhibition of glucose metabolism and apoptosis of AML cells. Consistent with its anti-leukemia stem-like cells activity in vitro, chiglitazar treatment in vivo resulted in the significant killing of leukemia stem-like cells as demonstrated in AML patient-derived xenograft (PDX) models. Mechanistically, PPARα overexpression inhibited the expression and promoter activity of PGK1 through blocking HIF1-α interaction on the PGK1 promoter. Thus, we concluded that targeting PPARα may serve as a novel approach for enhancing stem and progenitor cells elimination in AML.


Subject(s)
Leukemia, Myeloid, Acute , PPAR alpha , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Neoplastic Stem Cells/metabolism , Phosphoglycerate Kinase/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/therapeutic use , Signal Transduction
15.
Exp Hematol Oncol ; 11(1): 29, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581670

ABSTRACT

BACKGROUND: Leukemia stem cells (LSCs) are responsible for the initiation and perpetuation of acute myeloid leukemia (AML), and also represent leukemia relapse reservoirs with limited therapeutic approaches. Thus, additional treatment strategies are medical unmet needs to eliminate LSCs. METHODS: Cell counting kit-8 and Annexin-V-FITC/PI assays were used to examine the interaction of chidamide and apatinib on LSC-like cell lines (CD34+CD38- KG1α and Kasumi-1 cells) and primary CD34+ AML cells. AML patient-derived xenografts were established to investigate the in vivo efficacy of the combined regimen. RNA sequencing, Glutamine uptake assay, oxygen consumption assay, and western blotting were employed to explore the molecule mechanism for the cytotoxicity of chidamide with or without apatinib against LSC-like cell lines and/or primary CD34+ AML cells. RESULTS: In this study, chidamide and apatinib were synergisitc to diminish cell viability and induce apoptosis in CD34+CD38- KG1α and Kasumi-1 cells and in CD34+ primary AML cells. Importantly, chidamide combined with apatinib had more powerful in reducing leukemia burden and improving prognosis than single drug alone in an AML PDX model without significant adverse effects. Chidamide cytotoxicity was associated with decreasing glutamine uptake. The therapeutic synergy of chidamide and apatinib correlated with reprogramming of energy metabolic pathways. In addition, inactivating the VEGFR function and reducing the anti-apoptotic ability of the Bcl2 family contributed to the synergism of chidamide and apatinib in CD34+CD38- KG1α cells and CD34+ primary AML cells. CONCLUSION: Chidamide in combination with apatinib might be a promising therapeutic strategy to get rid of the population of AML stem and progenitor cells, and thus provide a potentially curative option in the treatment of patients with AML, although further clinical evaluations are required to substantiate the conclusion.

16.
J Cancer ; 13(1): 153-161, 2022.
Article in English | MEDLINE | ID: mdl-34976179

ABSTRACT

Purpose: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The malignant biological behavior of HCC is closely related to epithelial-mesenchymal transition (EMT), and EMT plays an important role in the progression, migration and metastasis of HCC. P21-activated kinase 3 (PAK3) is a serine/threonine protein kinase, and PAK3 affects the EMT, proliferation, metastasis and invasion of HCC. Methods: In this study, the relationship between PAK3 and HCC was first analyzed by bioinformatics, and then, the expression of PAK3 in clinical samples was detected by immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR) and Western blotting. Subsequently, the expression of PAK3 was further confirmed in HCC cells. In addition, after the overexpression or knockdown of PAK3 in cells, the proliferation, migration and invasion abilities of these cells were assessed by Cell Counting Kit-8 (CCK-8), wound healing and Transwell assays, and the results were confirmed in vivo experiments in mice. In addition, we also verified that PAK3 affected the EMT and EMT-related pathway of HCC through qRT-PCR, Western blotting and immunofluorescence experiments. Results: Through database analysis, we found that PAK3 was highly expressed in HCC patients and was positively correlated with tumor stage and grade, suggesting that PAK3 expression was closely related to HCC occurrence and development. We subsequently confirmed that PAK3 was overexpressed in HCC clinical samples and HCC cell lines and that PAK3 promoted the proliferation, migration and invasion of HCC cells in vitro. Finally, we found that PAK3 regulated EMT-related molecule expression and EMT-related TGF-ß/smad signaling pathway. Conclusion: High expression of PAK3 enhances the invasion of HCC and regulates EMT, suggesting that PAK3 may be a potential target for the treatment of HCC.

17.
Exp Hematol Oncol ; 11(1): 23, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35429966

ABSTRACT

Dysregulation of MDM2, a p53 negative regulator, frequently occurs in acute myeloid leukemia (AML) and is associated with unfavorable prognoses, rendering the p53-MDM2 axis an attractive target for the development of small-molecule inhibitors. MDM2 antagonists have been intensely developed but only lead to limited clinical activity, suggesting combination with additional drugs is an unmet medical need. In this study, we reported that Triptolide synergized with MDM2 inhibitor Nutlin-3a to suppress cell proliferation and induce mitochondrial-mediated apoptosis in p53 wt AML in vitro and ex vivo. More importantly, Triptolide cooperated with Nutlin-3a to delay tumor growth and abrogate leukemia burden in an AML xenograft model. In addition, we observed that Triptolide and Nutlin-3a were also cooperative in part of p53 deficient cases. Mechanistically, Nutlin-3a upregulated the transcriptional expressions of the p53 downstream targets PUMA and p21, while Triptolide declined the mRNA levels of two anti-apoptotic factors, XIAP and Mcl-1, in p53 wt cells. These effects were more notable when Triptolide and Nutlin-3a were combined. Our results revealed that Triptolide monotherapy exerted its antileukemia effect via both p53-dependent and independent ways, with the latter through perturbation of the MYC-ATF4 axis-mediated ER stress. Collectively, these data suggested that the Triptolide-Nutlin-3a combination might be a novel potential therapeutic intervention for patients with AML and it warrants further clinical evaluations.

18.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36678513

ABSTRACT

Transformed follicular lymphoma (t-FL), for which there is no efficient treatment strategy, has a rapid progression, treatment resistance, and poor prognosis, which are the main reasons for FL treatment failure. In this study, we identified a promising therapeutic approach with chiauranib, a novel orally developed multitarget inhibitor targeting VEGFR/Aurora B/CSF-1R. We first determined the cytotoxicity of chiauranib in t-FL cell lines through CCK-8, EdU staining, flow cytometry, and transwell assays. We also determined the killing effect of chiauranib in a xenograft model. More importantly, we identified the underlying mechanism of chiauranib in t-FL tumorigenesis by immunofluorescence and Western blotting. Treatment with chiauranib significantly inhibited cell growth and migration, promoted apoptosis, induced cell cycle arrest in G2/M phase, and resulted in significant killing in vivo. Mechanistically, chiauranib suppresses the phosphorylation level of VEGFR2, which has an anti-t-FL effect by inhibiting the downstream MEK/ERK/STAT3 signaling cascade. In conclusion, chiauranib may be a potential therapy to treat t-FL, since it inhibits tumor growth and migration and induces apoptosis by altering the VEGFR2/ERK/STAT3 signaling pathway.

19.
Front Immunol ; 13: 963379, 2022.
Article in English | MEDLINE | ID: mdl-36713428

ABSTRACT

Background: The etiology and pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are generally believed to be related to immune dysfunction and intestinal microbiota disorder. However, the exact mechanism is not yet fully understood. The pathological changes associated with dextran sodium sulfate (DSS)-induced colitis are similar to those in human UC. As a subgroup of the innate immune system, group 3 innate lymphoid cells (ILC3s) are widely distributed in the lamina propria of the intestinal mucosa, and their function can be regulated by a variety of molecules. Musashi2 (MSI2) is a type of evolutionarily conserved RNA-binding protein that maintains the function of various tissue stem cells and is essential for postintestinal epithelial regeneration. The effect of MSI2 deficiency in ILC3s on IBD has not been reported. Thus, mice with conditional MSI2 knockout in ILC3s were used to construct a DSS-induced colitis model and explore its effects on the pathogenesis of IBD and the species, quantity and function of the intestinal microbiota. Methods: Msi2flox/flox mice (Msi2fl/fl ) and Msi2flox/floxRorcCre mice (Msi2ΔRorc ) were induced by DSS to establish the IBD model. The severity of colitis was evaluated by five measurements: body weight percentage, disease activity index, colon shortening degree, histopathological score and routine blood examination. The species, quantity and function of the intestinal microbiota were characterized by high-throughput 16S rRNA gene sequencing of DNA extracted from fecal samples. Results: MSI2 was knocked out in the ILC3s of Msi2ΔRorc mice. The Msi2ΔRorc mice exhibited reductions in body weight loss, the disease activity index, degree of colon shortening, tissue histopathological score and immune cells in the peripheral blood compared to those of Msi2fl/fl mice after DSS administration. The 16S rRNA sequencing results showed that the diversity of the intestinal microbiota in DSS-treated Msi2ΔRorc mice changed, with the abundance of Firmicutes increasing and that of Bacteroidetes decreasing. The linear discriminant analysis effect size (LEfSe) approach revealed that Lactobacillaceae could be the key bacteria in the Msi2ΔRorc mouse during the improvement of colitis. Using PICRUST2 to predict the function of the intestinal microbiota, it was found that the functions of differential bacteria inferred by modeling were mainly enriched in infectious diseases, immune system and metabolic functions. Conclusions: MSI2 deficiency in ILC3s attenuated DSS-induced colonic inflammation in mice and affected intestinal microbiota diversity, composition, and function, with Lactobacillaceae belonging to the phylum Firmicutes possibly representing the key bacteria. This finding could contribute to our understanding of the pathogenesis of IBD and provide new insights for its clinical diagnosis and treatment.


Subject(s)
Colitis , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , RNA-Binding Proteins , Animals , Mice , Bacteria/genetics , Colitis/chemically induced , Colitis/genetics , Colitis/metabolism , Immunity, Innate , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/genetics , Lymphocytes/metabolism , RNA, Ribosomal, 16S/genetics , RNA-Binding Proteins/genetics
20.
Aging (Albany NY) ; 13(9): 13349-13358, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33952722

ABSTRACT

Abnormal cancer metabolism occurs throughout the development of tumors. Recent studies have shown that abnormal nucleotide metabolism not only accelerates the development of tumors but also inhibits the normal immune response in the tumor microenvironment. Although few relevant experiments and reports are available, study of the interaction between nucleotide metabolism and cancer development is rapidly developing. The intervention, alteration or regulation of molecular mechanisms related to abnormal nucleotide metabolism in tumor cells has become a new idea and strategy for the treatment of tumors and prevention of recurrence and metastasis. Determining how nucleotide metabolism regulates the occurrence and progression of tumors still needs long-term and extensive research and exploration.


Subject(s)
Neoplasms/metabolism , Nucleotides/metabolism , Signal Transduction/immunology , Tumor Microenvironment/immunology , Cell Line, Tumor/metabolism , Disease Progression , Humans , Neoplasms/immunology , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL