Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34585247

ABSTRACT

Single-cell technologies provide us new ways to profile transcriptomic landscape, chromatin accessibility, spatial expression patterns in heterogeneous tissues at the resolution of single cell. With enormous generated single-cell datasets, a key analytic challenge is to integrate these datasets to gain biological insights into cellular compositions. Here, we developed a domain-adversarial and variational approximation, DAVAE, which can integrate multiple single-cell datasets across samples, technologies and modalities with a single strategy. Besides, DAVAE can also integrate paired data of ATAC profile and transcriptome profile that are simultaneously measured from a same cell. With a mini-batch stochastic gradient descent strategy, it is scalable for large-scale data and can be accelerated by GPUs. Results on seven real data integration applications demonstrated the effectiveness and scalability of DAVAE in batch-effect removing, transfer learning and cell-type predictions for multiple single-cell datasets across samples, technologies and modalities. Availability: DAVAE has been implemented in a toolkit package "scbean" in the pypi repository, and the source code can be also freely accessible at https://github.com/jhu99/scbean. All our data and source code for reproducing the results of this paper can be accessible at https://github.com/jhu99/davae_paper.


Subject(s)
Single-Cell Analysis , Software , Algorithms , Chromatin , Transcriptome
2.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36622018

ABSTRACT

MOTIVATION: Single-cell multimodal assays allow us to simultaneously measure two different molecular features of the same cell, enabling new insights into cellular heterogeneity, cell development and diseases. However, most existing methods suffer from inaccurate dimensionality reduction for the joint-modality data, hindering their discovery of novel or rare cell subpopulations. RESULTS: Here, we present VIMCCA, a computational framework based on variational-assisted multi-view canonical correlation analysis to integrate paired multimodal single-cell data. Our statistical model uses a common latent variable to interpret the common source of variances in two different data modalities. Our approach jointly learns an inference model and two modality-specific non-linear models by leveraging variational inference and deep learning. We perform VIMCCA and compare it with 10 existing state-of-the-art algorithms on four paired multi-modal datasets sequenced by different protocols. Results demonstrate that VIMCCA facilitates integrating various types of joint-modality data, thus leading to more reliable and accurate downstream analysis. VIMCCA improves our ability to identify novel or rare cell subtypes compared to existing widely used methods. Besides, it can also facilitate inferring cell lineage based on joint-modality profiles. AVAILABILITY AND IMPLEMENTATION: The VIMCCA algorithm has been implemented in our toolkit package scbean (≥0.5.0), and its code has been archived at https://github.com/jhu99/scbean under MIT license. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Models, Statistical , Cell Differentiation , Cell Lineage
3.
BMC Bioinformatics ; 22(1): 5, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33407064

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) enables the possibility of many in-depth transcriptomic analyses at a single-cell resolution. It's already widely used for exploring the dynamic development process of life, studying the gene regulation mechanism, and discovering new cell types. However, the low RNA capture rate, which cause highly sparse expression with dropout, makes it difficult to do downstream analyses. RESULTS: We propose a new method SCC to impute the dropouts of scRNA-seq data. Experiment results show that SCC gives competitive results compared to two existing methods while showing superiority in reducing the intra-class distance of cells and improving the clustering accuracy in both simulation and real data. CONCLUSIONS: SCC is an effective tool to resolve the dropout noise in scRNA-seq data. The code is freely accessible at https://github.com/nwpuzhengyan/SCC .


Subject(s)
Gene Expression Profiling/methods , RNA, Small Cytoplasmic/genetics , Single-Cell Analysis/methods , Gene Expression Regulation/genetics , Genomics/methods , Models, Genetic
4.
BMC Bioinformatics ; 21(Suppl 13): 385, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32938373

ABSTRACT

BACKGROUND: Network alignment is an efficient computational framework in the prediction of protein function and phylogenetic relationships in systems biology. However, most of existing alignment methods focus on aligning PPIs based on static network model, which are actually dynamic in real-world systems. The dynamic characteristic of PPI networks is essential for understanding the evolution and regulation mechanism at the molecular level and there is still much room to improve the alignment quality in dynamic networks. RESULTS: In this paper, we proposed a novel alignment algorithm, Twadn, to align dynamic PPI networks based on a strategy of time warping. We compare Twadn with the existing dynamic network alignment algorithm DynaMAGNA++ and DynaWAVE and use area under the receiver operating characteristic curve and area under the precision-recall curve as evaluation indicators. The experimental results show that Twadn is superior to DynaMAGNA++ and DynaWAVE. In addition, we use protein interaction network of Drosophila to compare Twadn and the static network alignment algorithm NetCoffee2 and experimental results show that Twadn is able to capture timing information compared to NetCoffee2. CONCLUSIONS: Twadn is a versatile and efficient alignment tool that can be applied to dynamic network. Hopefully, its application can benefit the research community in the fields of molecular function and evolution.


Subject(s)
Algorithms , Computational Biology/methods , Drosophila/metabolism , Protein Interaction Maps/genetics , Proteins/metabolism , Animals , Humans
5.
BMC Bioinformatics ; 20(Suppl 7): 200, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31074373

ABSTRACT

BACKGROUND: Transcription factors (TFs) play important roles in the regulation of gene expression. They can activate or block transcription of downstream genes in a manner of binding to specific genomic sequences. Therefore, motif discovery of these binding preference patterns is of central significance in the understanding of molecular regulation mechanism. Many algorithms have been proposed for the identification of transcription factor binding sites. However, it remains a challengeable problem. RESULTS: Here, we proposed a novel motif discovery algorithm based on support vector machine (MD-SVM) to learn a discriminative model for TF binding sites. MD-SVM firstly obtains position weight matrix (PWM) from a set of training datasets. Then it translates the MD problem into a computational framework of multiple instance learning (MIL). It was applied to several real biological datasets. Results show that our algorithm outperforms MI-SVM in terms of both accuracy and specificity. CONCLUSIONS: In this paper, we modeled the TF motif discovery problem as a MIL optimization problem. The SVM algorithm was adapted to discriminate positive and negative bags of instances. Compared to other svm-based algorithms, MD-SVM show its superiority over its competitors in term of ROC AUC. Hopefully, it could be of benefit to the research community in the understanding of molecular functions of DNA functional elements and transcription factors.


Subject(s)
Algorithms , Nucleotide Motifs , Support Vector Machine , Transcription Factors/metabolism , Binding Sites , Humans , Protein Binding
6.
In Vitro Cell Dev Biol Anim ; 60(1): 80-88, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38127229

ABSTRACT

Breast cancer is a prevalent global disease that requires the development of effective therapeutic approaches. The occurrence of 5-fluorouracil (5-FU) resistance in breast cancer is emerging, which urgently needs new way to overcome the obstacle. In this study, we validated that the expression of LINC00467 is up-regulated in the breast cancer patients and breast cancer cells. In addition, the high expression of LINC00467 is associated with the 5-FU resistance of breast cancer cells. Interestingly, LINC00467 induced the homologous recombination (HR) repair via promoting the expression of NBS1 in 5-FU resistant breast cancer cells. Furthermore, miR-205 was validated as a common target of LINC00467 and NBS1, indicating that LINC00467 may induce NBS1 via the miRNA-mRNA target. Importantly, we identified that XBP1, as a transcription factor, induced the expression of LINC00467, which resulted in the enhanced HR efficiency and 5-FU resistance. Silencing XBP1 sensitized the 5-FU resistant breast cancer cells to the 5-FU treatment, whereas the ectopic expression of LINC00467 abrogated the effect of XBP1 silencing. In conclusion, LINC00467 enhances the 5-FU resistance by inducing NBS1-mediated DNA repair. LINC00467 also mediates the function of XBP1 in 5-FU resistance in breast cancer cells.


Subject(s)
Fluorouracil , MicroRNAs , Female , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL