ABSTRACT
This study investigates the longitudinal dynamic changes in immune cells in COVID-19 patients over an extended period after recovery, as well as the interplay between immune cells and antibodies. Leveraging single-cell mass spectrometry, we selected six COVID-19 patients and four healthy controls, dissecting the evolving landscape within six months post-viral RNA clearance, alongside the levels of anti-spike protein antibodies. The T cell immunophenotype ascertained via single-cell mass spectrometry underwent validation through flow cytometry in 37 samples. Our findings illuminate that CD8 + T cells, gamma-delta (gd) T cells, and NK cells witnessed an increase, in contrast to the reduction observed in monocytes, B cells, and double-negative T (DNT) cells over time. The proportion of monocytes remained significantly elevated in COVID-19 patients compared to controls even after six-month. Subpopulation-wise, an upsurge manifested within various T effector memory subsets, CD45RA + T effector memory, gdT, and NK cells, whereas declines marked the populations of DNT, naive and memory B cells, and classical as well as non-classical monocytes. Noteworthy associations surfaced between DNT, gdT, CD4 + T, NK cells, and the anti-S antibody titer. This study reveals the changes in peripheral blood mononuclear cells of COVID-19 patients within 6 months after viral RNA clearance and sheds light on the interactions between immune cells and antibodies. The findings from this research contribute to a better understanding of immune transformations during the recovery from COVID-19 and offer guidance for protective measures against reinfection in the context of viral variants.
Subject(s)
COVID-19 , Flow Cytometry , Leukocytes, Mononuclear , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/immunology , COVID-19/blood , COVID-19/virology , Leukocytes, Mononuclear/virology , Leukocytes, Mononuclear/immunology , SARS-CoV-2/immunology , Male , Female , Middle Aged , RNA, Viral/blood , Adult , Longitudinal Studies , Single-Cell Analysis/methods , Killer Cells, Natural/immunology , Antibodies, Viral/blood , Immunophenotyping , AgedABSTRACT
Acute liver injury (ALI) presents a challenging problem worldwide, prompting extensive research efforts. Cellular senescence has been found to be induced following ALI, and targeting cellular senescence has shown therapeutic potential. Therefore, understanding the expression of senescence-related genes in ALI can help to explore pathogenesis and treatment of this common disease. Carbon tetrachloride (CCl4) is commonly used to study ALI. Although polymerase chain reaction (PCR) is a convenient and economical molecular biology technique widely used in basic medicine, research on selecting suitable reference genes to obtain objective and reproducible PCR data is scarce. Moreover, evidence supporting the choice of reference genes for experimental studies of CCl4-induced ALI and hepatic senescence in mice is limited. In this study, we obtained murine livers at four time points (0, 12, 24, and 48 h) following CCl4 treatment. We used five algorithms (geNorm, BestKeeper, NormFinder, delta Ct, and RefFinder) to rank 12 candidate genes in real-time reverse-transcription quantitative PCR (RT-qPCR) experiments. Focusing on cellular senescence in this model, we adopted four senescence-associated secretory phenotype (SASP) genes (Il6, Il1b, Ccl2, and Ccl5) as target genes. Our results confirmed Gapdh and Tbp as suitable reference genes in murine CCl4-induced ALI models. Furthermore, we provide a table of published studies recommending reference genes for various liver disease models. This study provides a valuable reference for enhancing the reliability and reproducibility of ALI molecular findings.
Subject(s)
Carbon Tetrachloride , Cellular Senescence , Genes, Essential , Liver , Animals , Cellular Senescence/genetics , Carbon Tetrachloride/toxicity , Mice , Liver/metabolism , Liver/pathology , Liver/drug effects , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Male , Gene Expression Profiling/methods , Disease Models, Animal , Mice, Inbred C57BLABSTRACT
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.