Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 393
Filter
Add more filters

Publication year range
1.
Plant Biotechnol J ; 22(6): 1757-1772, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38288521

ABSTRACT

Alfalfa (Medicago sativa L.) is one of the most important forage legumes in the world, including autotetraploid (M. sativa ssp. sativa) and diploid alfalfa (M. sativa ssp. caerulea, progenitor of autotetraploid alfalfa). Here, we reported a high-quality genome of ZW0012 (diploid alfalfa, 769 Mb, contig N50 = 5.5 Mb), which was grouped into the Northern group in population structure analysis, suggesting that our genome assembly filled a major gap among the members of M. sativa complex. During polyploidization, large phenotypic differences occurred between diploids and tetraploids, and the genetic information underlying its massive phenotypic variations remains largely unexplored. Extensive structural variations (SVs) were identified between ZW0012 and XinJiangDaYe (an autotetraploid alfalfa with released genome). We identified 71 ZW0012-specific PAV genes and 1296 XinJiangDaYe-specific PAV genes, mainly involved in defence response, cell growth, and photosynthesis. We have verified the positive roles of MsNCR1 (a XinJiangDaYe-specific PAV gene) in nodulation using an Agrobacterium rhizobia-mediated transgenic method. We also demonstrated that MsSKIP23_1 and MsFBL23_1 (two XinJiangDaYe-specific PAV genes) regulated leaf size by transient overexpression and virus-induced gene silencing analysis. Our study provides a high-quality reference genome of an important diploid alfalfa germplasm and a valuable resource of variation landscape between diploid and autotetraploid, which will facilitate the functional gene discovery and molecular-based breeding for the cultivars in the future.


Subject(s)
Chromosomes, Plant , Diploidy , Genome, Plant , Medicago sativa , Medicago sativa/genetics , Genome, Plant/genetics , Chromosomes, Plant/genetics , Genetic Variation
2.
J Transl Med ; 22(1): 474, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764020

ABSTRACT

BACKGROUND: The initiation of fibroblast growth factor 1 (FGF1) expression coincident with the decrease of FGF2 expression is a well-documented event in prostate cancer (PCa) progression. Lactate dehydrogenase A (LDHA) and LDHB are essential metabolic products that promote tumor growth. However, the relationship between FGF1/FGF2 and LDHA/B-mediated glycolysis in PCa progression is not reported. Thus, we aimed to explore whether FGF1/2 could regulate LDHA and LDHB to promote glycolysis and explored the involved signaling pathway in PCa progression. METHODS: In vitro studies used RT‒qPCR, Western blot, CCK-8 assays, and flow cytometry to analyze gene and protein expression, cell viability, apoptosis, and cell cycle in PCa cell lines. Glycolysis was assessed by measuring glucose consumption, lactate production, and extracellular acidification rate (ECAR). For in vivo studies, a xenograft mouse model of PCa was established and treated with an FGF pathway inhibitor, and tumor growth was monitored. RESULTS: FGF1, FGF2, and LDHA were expressed at high levels in PCa cells, while LDHB expression was low. FGF1/2 positively modulated LDHA and negatively modulated LDHB in PCa cells. The depletion of FGF1, FGF2, or LDHA reduced cell proliferation, induced cell cycle arrest, and inhibited glycolysis. LDHB overexpression showed similar inhibitory effect on PCa cells. Mechanistically, we found that FGF1/2 positively regulated STAT1 and STAT1 transcriptionally activated LDHA expression while suppressed LDHB expression. Furthermore, the treatment of an FGF pathway inhibitor suppressed PCa tumor growth in mice. CONCLUSION: The FGF pathway facilitates glycolysis by activating LDHA and suppressing LDHB in a STAT1-dependent manner in PCa.


Subject(s)
Fibroblast Growth Factors , Glycolysis , L-Lactate Dehydrogenase , Prostatic Neoplasms , STAT1 Transcription Factor , Signal Transduction , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/genetics , Humans , Animals , L-Lactate Dehydrogenase/metabolism , Cell Line, Tumor , STAT1 Transcription Factor/metabolism , Fibroblast Growth Factors/metabolism , Mice, Nude , Cell Proliferation , Mice , Gene Expression Regulation, Neoplastic , Fibroblast Growth Factor 2/metabolism , Apoptosis , Lactate Dehydrogenase 5/metabolism , Isoenzymes
3.
Cancer Cell Int ; 24(1): 45, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287330

ABSTRACT

BACKGROUND: Pyroptosis, an inflammatory form of programmed cell death, has been implicated in the pathogenesis and progression of several cancers. However, the significance of pyroptosis-related genes (PRGs) in papillary thyroid cancer (PTC) remains unclear. METHODS: Transcriptome and clinical data of PTC patients were obtained from The Cancer Genome Atlas. The expression patterns of PRGs were identified by consensus clustering. A prognostic model for predicting the thyroid cancer-free interval (TCFi) employed five machine learning methods. Enrichment and immune-related analyses were performed to elucidate the role of pyroptosis. The responses to radioactive iodine (RAI), immune checkpoint inhibitors (ICIs), molecular targeted therapy (MTT), and chemotherapy (CTx) were predicted based on pyroptosis-derived features. Additionally, the expression of prognostic PRGs was validated via six external datasets, 16 cell lines, and 20 pairs of clinical samples. RESULTS: PTC patients were classified into three PyroClusters, C1 exhibited BRFA-like tumors with the highest invasiveness and the worst prognosis, C2 presented RAS-like tumors, and C3 was characterized by gene fusion. Nine PRGs (CXCL8, GJA1, H2BC8, IFI27, PRDM1, PYCARD, SEZ6L2, SIGLEC15, TRAF6) were filtered out to construct a PyroScore prognostic model. A derived nomogram demonstrated superior predictive performance than four clinical staging systems. A strong correlation between pyroptosis and tumor immune microenvironment (TIME) remodeling was observed in mechanistic analyses. Patients with a high PyroScore exhibited "hot" tumor immunophenotypes and had a poorer prognosis but could benefit more from ICIs and CTx (such as paclitaxel). Patients with a low PyroScore were more sensitive to RAI and MTT (such as pazopanib and sorafenib). CONCLUSIONS: PyroScore model can effectively predict TCFi in patients with PTC. Dysregulated expression of PRGs is associated with the TIME modeling. Pyroptosis features have potential significance for developing novel therapeutic strategies for PTC patients.

4.
J Magn Reson Imaging ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426606

ABSTRACT

BACKGROUND: The National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin scale (mRS) scores have important shortcomings. Amide proton transfer-weighted (APTw) imaging might offer more valuable information in ischemic strokes assessment. PURPOSE: To utilize APTw, apparent diffusion coefficient (ADC), and computed tomography perfusion (CTP) for the assessment of clinical symptom severity and 90-day prognosis in patients diagnosed with ischemic stroke. STUDY TYPE: Prospective. SUBJECTS: 61 patients (mean age 63.2 ± 9.7 years; 46 males, 15 females) with ischemic strokes were included in the study. FIELD STRENGTH/SEQUENCE: 3T/turbo spin echo (TSE) T1 -weighted imaging, T2 -weighted imaging, T2 -fluid attenuated inversion recovery (T2 -FLAIR), diffusion-weighted imaging (DWI), and single-shot TSE APTw imaging. ASSESSMENT: APTw, ADC, and CTP were used to compare patient subgroups and construct a prognostic nomogram model. STATISTICAL TESTS: Kolmogorov-Smirnov test, t-test, Mann-Whitney U test, chi-square test, Pearson correlation analysis, multivariate logistic regression analysis, decision curve analysis (DCA), receiver operating characteristic curves (ROCs). The significance threshold was set at P < 0.05. RESULTS: Correlation analysis revealed that APTw and NIHSS exhibit the highest correlation (r = -0.634, 95% confidence interval [CI] -0.418 to -0.782), surpassing that of ADC and lesion size. Multivariable analysis revealed APTw (odds ratio [OR] 0.905, 95% CI 0.845-0.970), ADC (OR 0.745, 95% CI 0.609-0.911), and infarct core-cerebral blood volume (IC-CBV) (OR 0.547, 95% CI 0.310-0.964) as potential risk factors associated with a poor prognosis. The nomogram model demonstrated the highest predictive efficacy, with an area under the curve (AUC) of 0.960 (95% CI 0.911-0.988), exceeding that of APTw, ADC, and IC-CBV individually. DATA CONCLUSION: The APTw technique holds potential value in categorizing and managing patients with ischemic stroke, offering guidance for the implementation of clinical treatment strategies. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

5.
Cell Commun Signal ; 22(1): 101, 2024 02 08.
Article in English | MEDLINE | ID: mdl-38326896

ABSTRACT

BACKGROUND: Our previous studies demonstrated that 1-Pyrroline-5-carboxylate (P5C) released by prostate cancer cells inhibits T cell proliferation and function by increasing SHP1 expression. We designed this study to further explore the influence of P5C on T cell metabolism, and produced an antibody for targeting P5C to restore the functions of T cells. METHOD: We co-immunoprecipated SHP1 from T cells and analyzed the proteins that were bound to it using liquid chromatography mass spectrometry (LC/MS-MS). The influence of P5C on T cells metabolism was also detected by LC/MS-MS. Seahorse XF96 analyzer was further used to identify the effect of P5C on T cells glycolysis. We subsequently designed and produced an antibody for targeting P5C by monoclonal technique and verified its effectiveness to restore the function of T cells in vitro and in vivo. RESULT: PKM2 and LDHB bind SHP1 in T cells, and P5C could increase the levels of p-PKM2 while having no effect on the levels of PKM2 and LDHB. We further found that P5C influences T cell energy metabolism and carbohydrate metabolism. P5C also inhibits the activity of PKM2 and decreases the content of intracellular lactic acid while increasing the activity of LDH. Using seahorse XF96 analyzer, we confirmed that P5C remarkably inhibits glycolysis in T cells. We produced an antibody for targeting P5C by monoclonal technique and verified that the antibody could oppose the influence of P5C to restore the process of glycolysis and function in T cells. Meanwhile, the antibody also inhibits the growth of prostate tumors in an animal model. CONCLUSION: Our study revealed that P5C inhibits the process of glycolysis in T cells by targeting SHP1/PKM2/LDHB complexes. Moreover, it is important that the antibody for targeting P5C could restore the function of T cells and inhibit the growth of prostate tumors.


Subject(s)
Prostatic Neoplasms , Pyrroles , T-Lymphocytes , Humans , Male , Animals , Prostate , Tumor Microenvironment , Cell Proliferation , Glycolysis , Cell Line, Tumor
6.
Neuroendocrinology ; 114(4): 386-399, 2024.
Article in English | MEDLINE | ID: mdl-38113872

ABSTRACT

INTRODUCTION: Insulin resistance is widely thought to be a critical feature in type 2 diabetes mellitus (T2DM), and there is significant evidence indicating a higher abundance of insulin receptors in the human cerebellum than cerebrum. However, the specific structural or functional changes in the cerebellum related to T2DM remain unclear, and the association between cerebellar alterations, insulin resistance, cognition, and emotion is yet to be determined. METHODS: We investigated neuropsychological performance, and structural and functional changes in specific cerebellar subregions in 43 T2DM patients with high insulin resistance (T2DM-highIR), 72 T2DM patients with low insulin resistance (T2DM-lowIR), and 50 controls. Furthermore, the correlation and stepwise multiple linear regression analysis were performed. RESULTS: Compared to the controls, T2DM exhibited lower cognitive scores and higher depressive/anxious scores. Furthermore, T2DM-highIR patients showed reduced gray matter volume (GMV) in the right cerebellar lobules VIIb, Crus I/II, and T2DM showed reduced GMV in left lobules I-IV compared to controls. Additionally, functional connectivity decrease was observed between the right lobules I-V and orbital part of the superior frontal gyrus in T2DM-highIR compared to both T2DM-lowIR and controls. Notably, there were negative correlations between the GMV of the lobules VIIb, Crus I/II, and updated homeostatic model assessment of insulin resistance, and positive correlation with executive/visuospatial performance in T2DM patients. CONCLUSIONS: These results suggest that the cerebellar lobules VIIb, Crus I/II, represent vulnerable brain regions in the context of insulin resistance. Overall, this study offers new insights into the neuropathophysiological mechanisms of brain impairment in patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Hyperinsulinism , Insulin Resistance , Humans , Gray Matter/diagnostic imaging , Magnetic Resonance Imaging/methods , Cerebellum/diagnostic imaging
7.
Inorg Chem ; 63(8): 3992-3999, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38359906

ABSTRACT

The thermodynamically stable 2H-phase MoS2 is a brilliant material toward hydrogen evolution reaction (HER) owing to its excellent Gibbs free energy of hydrogen adsorption. Nevertheless, the poor intrinsic properties of 2H-MoS2 limit its electrocatalytic performances toward HER. In this work, graphitic carbon nitride covalently bridging 2H-MoS2 (MoS2/GCN) is proposed to construct robust HER electrocatalysts. The strong π-p electron coupling between the delocalized π electrons of GCN and the localized p electrons of S atoms sufficiently expose active sites and accelerate the reaction kinetics. To be specific, MoS2/GCN exhibits remarkable HER activity (160 mV at 10 mA·cm-2) and long-term durability. Importantly, MoS2/GCN also provides great potential for industrial application. Density functional theory (DFT) calculations disclose that the π-p electron coupling at the MoS2/GCN interface regulates the electronic structure of S atoms, consequently providing enhanced HER performance. This work presents a feasible pathway to develop advanced electrocatalysts for energy conversions.

8.
Mol Divers ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926303

ABSTRACT

Succinate dehydrogenase inhibitors (SDHIs) as one of the fastest-growing fungicide categories for plant protection. In this study, a series of N'-phenyl pyridylcarbohydrazides as analogues of commercial SDHIs were designed and evaluated for inhibition activity on phytopathogenic fungi to search for potential novel SDHIs. The determination of antifungal activity in vitro and in vivo led to the discovery of a series of compounds with high activity and broad-spectrum property. Especially, N'-(4-fluorophenyl)picolinohydrazide (1c) and N'-(3,4-fluorophenyl)picolinohydrazide (1ae) showed 0.041-1.851 µg/mL of EC50 values on twelve fungi, superior to positive controls carbendazim and boscalid. In vivo activity, 1c at 50 µg/mL showed 61% of control efficacy at the post-treatment 9th day for the infection of P. piricola on apples, slightly smaller than 70% of carbendazim. In terms of action mechanism, 1c showed strong inhibition activity with IC50 of 0.107 µg/mL on SDH in Alternaria brassicae, superior to positive SDHI boscalid (IC50 0.182 µg/mL). Molecular docking indicated that 1c can well bind with the ubiquinone-binding region of SDH mainly by hydrogen bond, carbon hydrogen bond, π-alkyl, amide-π stacking, F-N and F-H interactions. Furthermore, scanning and transmission electron micrographs showed that 1c was able to obviously change the structure of mycelia and cell membrane. Fluorescence staining analysis showed that 1c could increase both the intracellular reactive oxygen species level and mitochondrial membrane potential. Finally, seed germination test, seedling growth test and cytotoxicity assay showed that 1c had very low toxicity to plant growth and mammalian cells. Thus, N'-phenyl pyridylcarbohydrazides especially 1c and 1ae can be considered promising fungicide alternatives for plant protection.

9.
Lipids Health Dis ; 23(1): 42, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331880

ABSTRACT

BACKGROUND: Lewy body dementia (LBD) ranks second among prevalent neurodegenerative dementias. Previous studies have revealed associations of serum lipid measures with several neurodegenerative diseases. Nevertheless, the potential connection between serum lipids and LBD remains undetermined. In this study, Mendelian randomization (MR) analyses were carried out to assess the causal relationships of several serum lipid measures with the risk of developing LBD. METHODS: Genome-wide association study (GWAS) data for serum lipids and LBD in European descent individuals were acquired from publicly available genetic summary data. A series of filtering procedures were conducted to identify the genetic variant candidates that are related to serum lipids, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglycerides (TG). The causal effects were primarily determined through inverse-variance weighting (IVW)-based analyses. RESULTS: Neither TG (odds ratio [OR] = 1.149; 95% confidence interval [CI], 0.887-1.489; P = 0.293) nor HDL-C (OR = 0.864; 95% CI, 0.718-1.041; P = 0.124) had causal effects on LBD. However, a causal relationship was identified between LDL-C and LBD (OR = 1.343; 95% CI, 1.094-1.649; P = 0.005), which remained significant (OR = 1.237; 95% CI, 1.015-1.508; P = 0.035) following adjustment for HDL-C and TG in multivariable MR. CONCLUSIONS: Elevated serum LDL-C increases the risk of LBD, while HDL-C and TG have no significant causal effects on LBD.


Subject(s)
Lewy Body Disease , Mendelian Randomization Analysis , Humans , Cholesterol, LDL , Risk Factors , Genome-Wide Association Study , Lewy Body Disease/genetics , Polymorphism, Single Nucleotide/genetics , Triglycerides , Cholesterol, HDL
10.
Mar Drugs ; 22(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786587

ABSTRACT

Marine symbiotic and epiphyte microorganisms are sources of bioactive or structurally novel natural products. Metabolic blockade-based genome mining has been proven to be an effective strategy to accelerate the discovery of natural products from both terrestrial and marine microorganisms. Here, the metabolic blockade-based genome mining strategy was applied to the discovery of other metabolites in a sea anemone-associated Streptomyces sp. S1502. We constructed a mutant Streptomyces sp. S1502/Δstp1 that switched to producing the atypical angucyclines WS-5995 A-E, among which WS-5995 E is a new compound. A biosynthetic gene cluster (wsm) of the angucyclines was identified through gene knock-out and heterologous expression studies. The biosynthetic pathways of WS-5995 A-E were proposed, the roles of some tailoring and regulatory genes were investigated, and the biological activities of WS-5995 A-E were evaluated. WS-5995 A has significant anti-Eimeria tenell activity with an IC50 value of 2.21 µM. The production of antibacterial streptopyrroles and anticoccidial WS-5995 A-E may play a protective role in the mutual relationship between Streptomyces sp. S1502 and its host.


Subject(s)
Multigene Family , Sea Anemones , Streptomyces , Streptomyces/genetics , Streptomyces/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Biosynthetic Pathways/genetics , Genome, Bacterial , Biological Products/pharmacology , Anthraquinones/pharmacology , Angucyclines and Angucyclinones
11.
Chem Biodivers ; : e202401063, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38924351

ABSTRACT

In the process of searching for anti-breast cancer agents, five sesquiterpene lactones (1-5), including two previously undescribed ones, yjaponica B-C (1-2), were isolated from the herb of Youngia japonica. Their structures were elucidated by spectroscopic data analyses and Marfey's method. Cytotoxic activities of all compounds against A549, U87, and 4T1 cell lines were tested using the CCK8 assay. The result showed that compound 3 possessed the highest cytotoxic activity against 4T1 cells with an IC50 value of 10.60 µM. Furthermore, compound 3 distinctly induced apoptosis, inhibited immigration, and blocked the cell cycle of 4T1 cells. In addition, compound 3 induced the production of reactive oxygen species. Further anticancer mechanism studies showed that compound 3 significantly upregulated expression of the cleaved caspase 3 and PARP, whereas it downregulated the expression of Bcl-2, cyclin D1, cyclin A2, CDK4, and CDK2. Taken together, our results demonstrate that compound 3 has a high potential of being used as a leading compound for the discovery of new anti-breast cancer agent.

12.
J Integr Plant Biol ; 66(4): 683-699, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38358036

ABSTRACT

Drought is a major threat to alfalfa (Medicago sativa L.) production. The discovery of important alfalfa genes regulating drought response will facilitate breeding for drought-resistant alfalfa cultivars. Here, we report a genome-wide association study of drought resistance in alfalfa. We identified and functionally characterized an MYB-like transcription factor gene (MsMYBH), which increases the drought resistance in alfalfa. Compared with the wild-types, the biomass and forage quality were enhanced in MsMYBH overexpressed plants. Combined RNA-seq, proteomics and chromatin immunoprecipitation analysis showed that MsMYBH can directly bind to the promoters of MsMCP1, MsMCP2, MsPRX1A and MsCARCAB to improve their expression. The outcomes of such interactions include better water balance, high photosynthetic efficiency and scavenge excess H2O2 in response to drought. Furthermore, an E3 ubiquitin ligase (MsWAV3) was found to induce MsMYBH degradation under long-term drought, via the 26S proteasome pathway. Furthermore, variable-number tandem repeats in MsMYBH promoter were characterized among a collection of germplasms, and the variation is associated with promoter activity. Collectively, our findings shed light on the functions of MsMYBH and provide a pivotal gene that could be leveraged for breeding drought-resistant alfalfa. This discovery also offers new insights into the mechanisms of drought resistance in alfalfa.


Subject(s)
Drought Resistance , Seedlings , Seedlings/genetics , Medicago sativa/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Genome-Wide Association Study , Hydrogen Peroxide/metabolism , Plant Breeding , Droughts
13.
Angew Chem Int Ed Engl ; 63(8): e202314763, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-37983842

ABSTRACT

Nanomedicines are extensively used in cancer therapy. Covalent organic frameworks (COFs) are crystalline organic porous materials with several benefits for cancer therapy, including porosity, design flexibility, functionalizability, and biocompatibility. This review examines the use of COFs in cancer therapy from the perspective of reticular chemistry and function-oriented materials design. First, the modification sites and functionalization methods of COFs are discussed, followed by their potential as multifunctional nanoplatforms for tumor targeting, imaging, and therapy by integrating functional components. Finally, some challenges in the clinical translation of COFs are presented with the hope of promoting the development of COF-based anticancer nanomedicines and bringing COFs closer to clinical trials.


Subject(s)
Metal-Organic Frameworks , Neoplasms , Metal-Organic Frameworks/therapeutic use , Nanomedicine , Porosity , Neoplasms/drug therapy
14.
J Am Chem Soc ; 145(3): 1475-1496, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36646043

ABSTRACT

Multicomponent reactions (MCRs) combine at least three reactants to afford the desired product in a highly atom-economic way and are therefore viewed as efficient one-pot combinatorial synthesis tools allowing one to significantly boost molecular complexity and diversity. Nowadays, MCRs are no longer confined to organic synthesis and have found applications in materials chemistry. In particular, MCRs can be used to prepare covalent organic frameworks (COFs), which are crystalline porous materials assembled from organic monomers and exhibit a broad range of properties and applications. This synthetic approach retains the advantages of small-molecule MCRs, not only strengthening the skeletal robustness of COFs, but also providing additional driving forces for their crystallization, and has been used to prepare a series of robust COFs with diverse applications. The present perspective article provides the general background for MCRs, discusses the types of MCRs employed for COF synthesis to date, and addresses the related critical challenges and future perspectives to inspire the MCR-based design of new robust COFs and promote further progress in this emerging field.

15.
Small ; 19(39): e2302811, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37194977

ABSTRACT

Polymerized ionic liquids (PILs) with super ion diffusion kinetics have aroused considerable attention in rechargeable batteries, which are very promising to solve the problem of the slow ion diffusion kinetics in organic electrode materials. Theoretically, PILs incorporated redox groups are very suitable as anode materials to realize "superlithiation" performance, achieving high lithium storage capacity. In this study, redox pyridinium-based PILs (PILs-Py-400) have been synthesized through trimerization reactions by pyridinium ionic liquids with cyano groups under an appropriate temperature (400 °C). The positively charged skeleton, extended conjugated system, abundant micropores, and amorphous structure for PILs-Py-400 can boost the utilization efficiency of redox sites. A high capacity of 1643 mAh g-1 at 0.1 A g-1 (96.7% of the theoretical capacity) has been obtained, indicating intriguing 13 Li+ redox reactions in per repeating unit of one pyridinium ring, one triazine ring, and one methylene. Moreover, PILs-Py-400 exhibit excellent cycling stability with a capacity of around 1100 mAh g-1 at 1.0 A g-1 after 500 cycles, and the capacity retention is 92.2%.

16.
BMC Cancer ; 23(1): 416, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37158833

ABSTRACT

BACKGROUND: Pathologic complete response (pCR) following preoperative systemic therapy is associated with improved outcomes after subsequent liver transplant/resection in hepatocellular carcinoma (HCC). However, the relationship between radiographic and histopathological response remains unclear. METHODS: We retrospectively examined patients with initially unresectable HCC who received tyrosine kinase inhibitor (TKI) plus anti-programmed death 1 (PD-1) therapy before undergoing liver resection between March 2019 and September 2021 across 7 hospitals in China. Radiographic response was evaluated using mRECIST. A pCR was defined as no viable tumor cells in resected samples. RESULTS: We included 35 eligible patients, of whom 15 (42.9%) achieved pCR after systemic therapy. After a median follow-up of 13.2 months, tumors recurred in 8 non-pCR and 1 pCR patient. Before resection, there were 6 complete responses, 24 partial responses, 4 stable disease cases, and 1 progressive disease case, per mRECIST. Predicting pCR by radiographic response yielded an area under the receiver operating characteristic curve (AUC) of 0.727 (95% CI: 0.558-0.902), with an optimal cutoff value of 80% reduction in the enhanced area in MRI (called major radiographic response), which had a 66.7% sensitivity, 85.0% specificity, and a 77.1% diagnostic accuracy. When radiographic response was combined with α-fetoprotein response, the AUC was 0.926 (95% CI: 0.785-0.999); the optimal cutoff value was 0.446, which had a 91.7% sensitivity, 84.6%, specificity, and an 88.0% diagnostic accuracy. CONCLUSIONS: In patients with unresectable HCC receiving combined TKI/anti-PD 1 therapy, major radiographic response alone or combined with α-fetoprotein response may predict pCR.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/drug therapy , alpha-Fetoproteins , Retrospective Studies , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/drug therapy , Neoplasm Recurrence, Local/diagnostic imaging , Immunotherapy , Protein Kinase Inhibitors/therapeutic use
17.
Langmuir ; 39(7): 2659-2666, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36752594

ABSTRACT

Hydrogels are water-swollen, typically soft networks useful as biomaterials and in other fields of biotechnology. Hydrogel networks capable of sensing and responding to external perturbations, such as light, temperature, pH, or force, are useful across a wide range of applications requiring on-demand cross-linking or dynamic changes. Thus far, although mechanophores have been described as strain-sensitive reactive groups, embedding this type of force-responsiveness into hydrogels is unproven. Here, we synthesized multifunctional polymers that combine a hydrophilic zwitterion with permanently cross-linking alkenes, and dynamically cross-linking disulfides. From these polymers, we created hydrogels that contain irreversible and strong thiol-ene cross-links and reversible disulfide cross-links, and they stiffened in response to strain, increasing hundreds of kPa in modulus under compression. We examined variations in polymer composition and used a constitutive model to determine how to balance the number of thiol-ene vs disulfide cross-links to create maximally force-responsive networks. These strain-stiffening hydrogels represent potential biomaterials that benefit from the mechanoresponsive behavior needed for emerging applications in areas such as tissue engineering.


Subject(s)
Hydrogels , Polymers , Hydrogels/chemistry , Polymers/chemistry , Biocompatible Materials/chemistry , Sulfhydryl Compounds/chemistry , Disulfides/chemistry
18.
Neuroendocrinology ; 113(7): 736-755, 2023.
Article in English | MEDLINE | ID: mdl-36630921

ABSTRACT

INTRODUCTION: Type 2 diabetes mellitus (T2DM) patients with depression have a higher risk of complications and mortality than T2DM without depression. However, the exact neuropathophysiological mechanism remains unclear. Consequently, the current study aimed to investigate the alteration of cortical and subcortical spontaneous neural activity in T2DM patients with and without depression. METHODS: The demographic data, clinical variables, neuropsychological tests, and functional and anatomical magnetic resonance imaging of depressed T2DM (n = 47) of non-depressed T2DM (n = 59) and healthy controls (n = 41) were collected and evaluated. The correlation analysis, stepwise multiple linear regression, and receiver operating characteristic curve were performed for further analysis. RESULTS: Abnormal neural activities in the bilateral posterior cingulate cortex (PCC) and hippocampus were observed in depressed and non-depressed T2DM and the right putamen of the depressed T2DM. Interestingly, the subcortical degree centrality (DC) of the right hippocampus and putamen were higher in depressed than non-depressed T2DM. Furthermore, the cortical amplitude of low-frequency fluctuation (ALFF) in PCC, subcortical DC in the putamen of depressed T2DM, and hippocampus of non-depressed T2DM was correlated with cognitive scores. In contrast, the cortical fractional ALFF in PCC of non-depressed T2DM was correlated with depression scores. CONCLUSIONS: The abnormalities of spontaneous cortical activity in PCC and subcortical activity in the hippocampus might represent the neurobiological feature of cerebral dysfunction in T2DM. Notably, the altered subcortical activity in the right putamen might mainly associate with negative emotion in T2DM, which could be a promising biomarker for recognizing early cerebral dysfunction in depressed T2DM. This study provided a novel insight into the neuropathophysiological mechanism of brain dysfunction in T2DM with and without depression.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnostic imaging , Depression/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Hippocampus , Magnetic Resonance Imaging/methods , Brain/pathology
20.
J Nat Prod ; 86(3): 589-595, 2023 03 24.
Article in English | MEDLINE | ID: mdl-36563017

ABSTRACT

Three diphenyl ethers (1-3) and a cyclopentenone (4), together with seven known compounds (5-11), were isolated from the fermentation broth of the marine sediment-derived fungus Spiromastix sp. SCSIO F190. Compounds 3 and 4 were found to exist as a pair of atropisomers (3a, 3b) and racemates (4a, 4b), respectively. The planar structures of compounds 1-4 were elucidated on the basis of NMR and HRESIMS data sets. The absolute configurations of 2 and 3 were determined by spectroscopic and single-crystal X-ray diffraction analyses, whereas the configuration of 4 was determined by spectroscopic and chiral analyses. All compounds, except for 4 and 11, displayed activities against various pathogenic bacteria. Notably, compounds 1-4, especially 1, exhibited strong activity against Gram-positive bacteria, including methicillin-resistant bacterial strains of Staphylococcus aureus (MRSA), Enterococcus faecalis ATCC 29212, and Bacillus subtilis BS01, with MIC values ranging from 0.5 to 4 µg/mL. Moreover, the structure-activity relationship analyses of the active compounds and their analogues revealed the critical structural features correlating to the observed antimicrobial activities, herein providing insights for antimicrobial drug development.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Polyketides , Anti-Bacterial Agents/chemistry , Polyketides/chemistry , Molecular Structure , Fungi , Magnetic Resonance Spectroscopy , Bacteria , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL