Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Toxicol Mech Methods ; 33(2): 113-122, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35818324

ABSTRACT

Di (2-ethylhexyl) phthalate (DEHP) is one of the most prevalent xenoestrogen endocrine disruptor in daily life. A growing number of studies showed that DEHP could exhibit long-term adverse health effects on the human body, particularly in the liver, kidneys, heart and reproductive systems. However, the impact of oral intake of DEHP on the nervous system is extremely limited. In the present study, the adult C57BL/6J male mice were intragastrically administered with two dosages of DEHP for 35 days. The behavioral parameters were assessed using the elevated plus maze and open-field test. The mRNA expression levels of neuropeptides and the oxidative stress-associated proteins were detected by qPCR and western blot seperately. The histopathologic alterations of the brain were observed by H&E and Nissl staining. The results demonstrated that DEHP exposure could result in neurobehavioral impairments such as locomotor increase and anxiety-like behavior. Furthermore, pathological damages were clearly observed in the cerebral cortex and hippocampus, accompanied by a decrease in neuropeptides and an increase in oxidative stress, which were all positively correlated with the dose of DEHP. Together, these findings provide valuable clues into the DEHP-induced neurotoxicity.


Subject(s)
Diethylhexyl Phthalate , Mice , Animals , Humans , Male , Diethylhexyl Phthalate/toxicity , Mice, Inbred C57BL , Brain , Anxiety/chemically induced , Oxidative Stress
2.
Ecotoxicol Environ Saf ; 245: 114104, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36174316

ABSTRACT

Coexposure of nanoplastics (NPs) with other pollutants adsorbed from the surroundings has received extensive attention. Currently, the combined effects of NPs and plasticizers remain unclear. Di-(2-ethylhexyl) phthalate (DEHP) is a commonly used plasticizer that has raised much concern owing to its ubiquitous pollution and endocrine-disrupting potential. This study aimed to investigate the toxic effects on the male reproductive system upon coexposure to NPs and DEHP. The C57BL/6J mice were orally administrated with polystyrene nanoparticles (PSNPs), DEHP or both for 35 days to evaluate their effects on sperm quality, histology of testes and epididymides, testicular transcriptomic characteristics as well as expression of some important genes in the epididymides. The low-dose PSNPs used here did not induce significant changes in sperm quality, while DEHP alone or cotreatment with DEHP and PSNPs caused notable impairment, mainly manifesting as decreased sperm quality and aberrant structure of the testis and epididymis. Moreover, enhanced toxic effects were found in the cotreatment group when compared with the individual DEHP treatment group, as manifested by more obvious alterations in the sperm parameters as well as histological changes in the testis and epididymis. Testicular transcriptomic analysis revealed differential regulation of genes involved in immune response, cytoplasmic pattern recognition receptor signaling pathways, protein ubiquitination, oxidative stress, necrotic cell death, ATP synthesis and the cellular respiratory chain. RT-qPCR verified that the expression patterns of Cenpb, Crisp1 and Mars were changed in testes, and genes relevant to epididymal function including Aqp9 and Octn2 were downregulated in epididymides, particularly in the cotreatment group. Collectively, our results emphasize that DEHP at an environmentally relevant dose can induce male reproductive toxicity, and PSNPs may aggravate the toxic effects.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Nanoparticles , Adenosine Triphosphate/metabolism , Animals , Diethylhexyl Phthalate/metabolism , Environmental Pollutants/metabolism , Genitalia, Male , Male , Mice , Mice, Inbred C57BL , Microplastics , Nanoparticles/toxicity , Phthalic Acids , Plasticizers/metabolism , Plasticizers/toxicity , Polystyrenes/metabolism , Polystyrenes/toxicity , Receptors, Pattern Recognition/metabolism , Semen , Testis
3.
J Nanobiotechnology ; 19(1): 234, 2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34362405

ABSTRACT

BACKGROUND: Pregnancy exposure to titanium dioxide nanoparticles (TiO2NPs) is a vital consideration due to their inadvertent ingestion from environmental contamination. The potential health effects of TiO2NPs on the neurodevelopmental process should be seriously concerned in health risk assessment, especially for the pregnant women who are susceptible to the neurodevelopmental toxicity of nano-sized particles. However, the available evidence of neurodevelopmental toxicity of TiO2NPs remains very limited. METHODS: In the present study, the pregnant mice were intragastric administered with 150 mg/kg TiO2NPs from gestational day (GD) 8 to 21, the maternal behaviors and neurodevelopment-related indicators in offspring were all assessed at different time points after delivery. The gut microbial community in both dams and their offspring were detected by using 16S ribosomal RNA (rRNA) gene sequencing. The gut-brain axis related indicators were also determined in the offspring. RESULTS: The results clearly demonstrated that exposure to TiO2NPs did not affect the maternal behaviors of pregnant mice, or cause the deficits on the developmental milestones and perturbations in the early postnatal development of offspring. Intriguingly, our data revealed that pregnancy exposure of TiO2NPs did not affect locomotor function, learning and memory ability and anxiety-like behavior in offspring at postnatal day (PD) 21, but resulted in obvious impairments on these neurobehaviors at PD49. Similar phenomena were obtained in the composition of gut microbial community, intestinal and brain pathological damage in offspring in adulthood. Moreover, the intestinal dysbiosis induced by TiO2NPs might be highly associated with the delayed appearance of neurobehavioral impairments in offspring, possibly occurring through disruption of gut-brain axis. CONCLUSIONS: This is the first report elucidated that pregnancy exposure to TiO2NPs caused delayed appearance of neurobehavioral impairments in offspring when they reached adulthood, although these perturbations did not happen at early life after delivery. These findings will provide valuable insights about neurodevelopmental toxicity of TiO2NPs, and call for comprehensive health risk assessment of TiO2NPs on the susceptible population, such as pregnant women.


Subject(s)
Dysbiosis/chemically induced , Nanoparticles/adverse effects , Titanium/adverse effects , Animals , Brain-Gut Axis , Female , Gastrointestinal Microbiome/drug effects , Male , Mice , Mice, Inbred C57BL , Pregnancy
4.
J Appl Toxicol ; 41(4): 618-631, 2021 04.
Article in English | MEDLINE | ID: mdl-33029813

ABSTRACT

Mono(2-ethylhexyl)phthalate (MEHP), the active metabolite of di(2-ethylhexyl)phthalate (DEHP), is known to exert cardiotoxicity. The aim of the present study was to investigate the role of forkhead box O3a (FOXO3a) in MEHP-induced human AC16 cardiomyocyte injuries. MEHP reduced cell viability and mitochondrial membrane potential (ΔΨm), whereas it increased lactate dehydrogenase (LDH) leakage, production of reactive oxygen species (ROS), and apoptosis in cardiomyocytes. The expression of FOXO3a and its target genes, mitochondrial superoxide dismutase (Mn-SOD) and apoptosis repressor with caspase recruitment domain (ARC), increased after MEHP exposure, but the expression of p-FOXO3a protein was decreased. Overexpression of FOXO3a decreased the production of ROS and the apoptosis rate induced by MEHP, and the expression of Mn-SOD and ARC was further increased after MEHP exposure. In contrast, knockdown of FOXO3a resulted in increased ROS production and apoptosis and suppressed the expression of Mn-SOD and ARC in the presence of MEHP. However, overexpression or knockdown of FOXO3a did not affect MEHP-induced loss of ΔΨm. In conclusion, the loss of ΔΨm and apoptosis are involved in MEHP-induced cardiomyocyte toxicity. Activation of FOXO3a defends against MEHP-induced oxidative stress and apoptosis by upregulating the expression of Mn-SOD and ARC in AC16 cardiomyocytes.


Subject(s)
Apoptosis/drug effects , Cell Survival/drug effects , Diethylhexyl Phthalate/toxicity , Forkhead Box Protein O3/drug effects , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Cardiotoxicity/etiology , Cardiotoxicity/physiopathology , Cells, Cultured/drug effects , Diethylhexyl Phthalate/analogs & derivatives , Humans
5.
Ecotoxicol Environ Saf ; 169: 551-563, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30476817

ABSTRACT

Exposure to ambient fine particular matter (PM2.5) has been clearly associated with male reproductive disorders. However, very limited toxicological studies were carried out to investigate the potential mechanisms underlying the PM2.5-induced sperm quality decline. In the present study, we established a real time whole-body PM2.5 exposure mouse model to investigate the effects of PM2.5 on sperm quality and its potential mechanisms. Sixty male C57BL/6 mice were randomly subjected to three groups: filtered air group, unfiltered air group and concentrated air group. Half of the mice from each group were sacrificed for study when the exposure duration accumulated to 8 weeks and the rest of the mice were sacrificed when exposed for 16 weeks. Our results suggested that PM2.5 exposure could induce significant increases in circulating white blood cells and inflammation in lungs. PM2.5 exposure induced apparently DNA damages and histopathologic changes in testes. There were significantly decreased sperm densities of mice, which were paralleled with the down-regulated testosterone levels in testes tissue of mice after exposure to PM2.5 for 16 weeks. The numbers of motile sperms were decreased and sperms with abnormal morphology were increased after PM2.5 exposure in a time-depended and dose-depended manner. PM2.5 exposure significantly increased the expression of the major components of the NACHT, LRR and PYD domains-containing protein3 (NALP3) inflammasome, accompanied by the increased expression of miR-183/96/182 targeting FOXO1 in testes. The present data demonstrated that sperm quality decline induced by PM2.5 could be partly explained by the inflammatory reaction in testes which might be a consequence of systemic inflammation. The molecular mechanism was depended on the activation of NALP3 inflammasome accompanied by miR-183/96/182 targeting FOXO1 in testes.


Subject(s)
Air Pollutants/toxicity , Forkhead Box Protein O1/metabolism , Inflammasomes/metabolism , MicroRNAs/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Particulate Matter/toxicity , Spermatozoa/drug effects , Testis/drug effects , Air Pollutants/analysis , Animals , Male , Mice , Mice, Inbred C57BL , Particle Size , Particulate Matter/analysis , Random Allocation , Spermatozoa/metabolism , Spermatozoa/pathology , Testis/metabolism , Testis/pathology
6.
Pak J Pharm Sci ; 30(4(Suppl.)): 1479-1481, 2017 Jul.
Article in English | MEDLINE | ID: mdl-29044001

ABSTRACT

This paper aimed to evaluate the clinical application value of vitrectomy combined with intraocular drug injection on treatment of severe endophthalmitis. Retrospective analyzed the 28 eyes for the 28 cases of patients suffering severe endophthalmitis, and with treatment of pars plana vitrectomy combined with intraocular drug injection, and foreign matter removal surgery. This study also analyzed the whole body and local application of antibiotics data, and clinical data of corticosteroid drug treatment. This study had followed up 6 to 12 months, 28 intraocular infected eyes of the 28 cases all had got controlled. The vision of 26 eyes improved to some degree, 2 eyes had eyeball atrophy. vitrectomy combined with intraocular drug injection was the most effective method to treatment the suppurative endophthalmitis.


Subject(s)
Adrenal Cortex Hormones/administration & dosage , Anti-Bacterial Agents/administration & dosage , Endophthalmitis/therapy , Vitrectomy , Adolescent , Adrenal Cortex Hormones/adverse effects , Adult , Aged , Anti-Bacterial Agents/adverse effects , Child , Combined Modality Therapy , Endophthalmitis/diagnosis , Endophthalmitis/microbiology , Female , Humans , Injections, Intraocular , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Time Factors , Treatment Outcome , Vitrectomy/adverse effects , Young Adult
7.
Biochem Biophys Res Commun ; 457(2): 187-93, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25545058

ABSTRACT

Oridonin is an orally available drug isolated from Traditional Chinese Medicine. Previous studies with oridonin have demonstrated broad-spectrum anticancer activity in a variety of cancer types. However, the effect of oridonin in uveal melanoma has not been addressed. In this study, we aimed to investigate whether oridonin elicited anticancer activity and its underlying mechanism in human uveal melanoma cells. We demonstrated that oridonin potently reduced cell viability, induced apoptosis and inhibited clonogenic survival and growth with single digit micromolar concentrations in uveal melanoma OCM-1 and MUM2B cell lines. We found that oridonin markedly increased the expression of proapoptotic Bcl-2 family protein Bim in uveal melanoma cells, and knockdown Bim by small interfering RNA significantly attenuated oridonin-induced cell death, indicating an essential role of Bim in oridonin-mediated anticancer activity. Additionally, we observed that oridonin suppressed Fatty Acid Synthase (FAS) expression in uveal melanoma cells, and enforced FAS expression by insulin partially rescued the cells from oridonin-induced apoptosis, showing that inhibition of FAS also contributed to oridonin-mediated apoptosis. Taken together, we reported that oridonin displays potent anticancer effect against uveal melanoma cells through upregulation of Bim and inhibition of FAS. Since oridonin is a popular anticancer agent, our study therefore may have translational implication on the management of patients with uveal melanoma.


Subject(s)
Apoptosis/drug effects , Diterpenes, Kaurane/pharmacology , Down-Regulation/drug effects , Fatty Acid Synthases/metabolism , Melanoma/enzymology , Melanoma/pathology , Up-Regulation/drug effects , Uveal Neoplasms/enzymology , Uveal Neoplasms/pathology , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins , Bcl-2-Like Protein 11 , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Humans , Membrane Proteins , Proto-Oncogene Proteins , Tumor Stem Cell Assay
9.
Indian J Ophthalmol ; 72(Suppl 3): S441-S447, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38389249

ABSTRACT

PURPOSE: To explore the effect of 20-hydroxyeicosatetraenoic acid (20-HETE) on retinal ischemia-reperfusion injury (RIRI) and the protective effect of N-hydroxy-N'-(4-n-butyl-2-methylphenyl)formamidine (HET0016) on RIRI. METHODS: Male Sprague-Dawley rats were randomly divided into the normal control group, experimental model group (RIRI group), experimental solvent group (RIRI + solvent group), and experimental treatment group (RIRI + HET0016 group). RESULTS: The levels of 20-HETE, tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß) in the retina of rats at 24 h after reperfusion were measured by enzyme-linked immunosorbent assay. Hematoxylin-eosin staining was used to observe the retinal morphological and thickness changes at 24 h, 48 h, and 7 days after reperfusion. The number and localized expression of matrix metalloproteinase-9-positive cells in the retina of the rats at 24 h after reperfusion and the activation and localized expression of retinal microglia at 48 h after reperfusion were measured using an immunohistochemical method. The nuclear metastasis of nuclear factor kappa-B (NF-κB, p65) cells at 24 h after reperfusion was observed using an immunofluorescence method. CONCLUSION: Overall, 20-HETE might activate microglia to aggravate RIRI by the NF-κB pathway, but HET0016 has significant protective effects for the retina.

10.
Front Pediatr ; 12: 1383602, 2024.
Article in English | MEDLINE | ID: mdl-38983459

ABSTRACT

Background: The dietary protein proportion may be crucial in triggering overweight and obesity among children and adolescents. Methods: Cross-sectional data from 4,336 children and adolescents who participated in the National Health and Nutrition Survey (NHANES) between 2011 and March 2020 were analyzed. Multivariate logistic regression was used to calculate odds ratio (OR) and 95% confidence interval (CI). Restricted cubic splines assessed the nonlinear relationships between dietary protein intake and the prevalence of overweight and obesity. Results: Adjusted logistic regression models showed that each 1% increase in dietary protein proportion was associated with a 4% higher risk of overweight and obesity (OR = 1.04, 95% CI: 1.01-1.07). A nonlinear relationship was noted in children aged 6-11 years (P < 0.05), as demonstrated by restricted cubic spline analysis. After dividing dietary protein intake into quartiles, the highest quartile had an adjusted OR of 2.07 (95% CI: 1.35, 3.16, P = 0.001) compared to the lowest, among children aged 6-11 years. Conclusion: Dietary protein intake is positively linked to overweight and obesity in American children, irrespective of individual characteristics and total energy consumption.

11.
J Hazard Mater ; 472: 134440, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38723480

ABSTRACT

N6-methyladenosine (m6A) is the most common form of internal post-transcriptional methylation observed in eukaryotic mRNAs. The abnormally increased level of m6A within the cells can be catalyzed by specific demethylase fat mass and obesity-associated protein (FTO) and stay in a dynamic and reversible state. However, whether and how FTO regulates oxidative damage via m6A modification remain largely unclear. Herein, by using both in vitro and in vivo models of oxidative damage induced by arsenic, we demonstrated for the first time that exposure to arsenic caused a significant increase in SUMOylation of FTO protein, and FTO SUMOylation at lysine (K)- 216 site promoted the down-regulation of FTO expression in arsenic target organ lung, and therefore, remarkably elevating the oxidative damage via an m6A-dependent pathway by its specific m6A reader insulin-like growth factor-2 mRNA-binding protein-3 (IGF2BP3). Consequently, these findings not only reveal a novel mechanism underlying FTO-mediated oxidative damage from the perspective of m6A, but also imply that regulation of FTO SUMOylation may serve as potential approach for treatment of oxidative damage.


Subject(s)
Adenosine , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Arsenic , RNA-Binding Proteins , Sumoylation , Animals , Humans , Male , Mice , Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/metabolism , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Arsenic/toxicity , Lung/drug effects , Lung/metabolism , Oxidative Stress/drug effects , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Sumoylation/drug effects
12.
Analyst ; 138(2): 438-42, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23193538

ABSTRACT

The development of an indirect competitive immunomagnetic-proximity ligation assay (ICIPLA), which is a novel method for detecting small molecules, is described in this report. Free small molecules in samples can be detected using a proximity ligation assay (PLA); the detection is based on the proximity effect caused by a high concentration of small molecule-BSA conjugates bound to streptavidin magnetic beads. As an indirect format competitive immunoassay, the ICIPLA method has the advantage in that the quantity of monoclonal antibody (mAb) used for small-molecule detection is 8-fold lower than that required for the competitive immunomagnetic-proximity ligation assay (CIPLA) described in our previous work. Small molecules can be detected using a single monoclonal antibody, and the PLA method can be used to amplify high-performance signals. In this work, the small molecular compound ractopamine (RAC) was selected as a target for ICIPLA. The limit of detection (LOD) was 0.01 ng ml(-1), and the method exhibited a broad dynamic range of up to six orders of magnitude. We also employed the ICIPLA method to detect RAC in serum, urine, and muscle extracts; the results indicated that the LOD and dynamic range were not altered. The cross-reactivity studies showed that the cross-reactivity values for all RAC analogs were below 0.01%. These results suggest that ICIPLA is a sensitive, specific and practical method for small-molecule detection. This is the first report of the improved PLA technology for small-molecule detection by indirect competitive formats in the biological samples.


Subject(s)
Antibodies, Monoclonal/immunology , Immunoassay , Immunomagnetic Separation , Phenethylamines/blood , Phenethylamines/urine , Antibodies, Monoclonal/metabolism , Biosensing Techniques , Limit of Detection , Muscles/chemistry , Streptavidin/chemistry
13.
Eur J Obstet Gynecol Reprod Biol ; 283: 130-135, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36848763

ABSTRACT

OBJECTIVE: Triclosan (TCS), a novel endocrine disrupter, has induced widespread human exposure due to its widespread use in personal care products. Environmental TCS exposure was suggested to be associated with human semen quality. However, little is known about seminal plasma TCS concentration and the risk of low sperm quality. This case-control study is established to examine the relationship between seminal plasma TCS and the risk of low sperm quality. STUDY DESIGN: One hundred men with low sperm quality as cases and one hundred normal men as controls were recruited a fertility clinic in Shijiazhuang, China, during 2018-2019. Seminal plasma TCS concentration was determined using an ultrahigh-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). Sperm concentration, sperm count, sperm motility and sperm progressive motility were evaluated according to World Health Organization (WHO) guidelines to assess the sperm quality. We used the Mann-Whitney rank-sum test and Kruskal-Wallis test to assess the differences of seminal plasma TCS concentration between the cases and the controls. In addition, logistic regression analysis was used to estimate the associations between seminal plasma TCS concentrations and low sperm quality risk adjusting for age, body mass index (BMI), abstinence time, smoking, and drinking RESULTS AND CONCLUSIONS: The level of seminal plasma TCS was observed slightly but not significantly higher in the case group than the control group. We also observed significant association between seminal plasma TCS concentrations and semen parameters in both control and case groups. Moreover, the seminal plasma TCS levels at the fourth quartile were found to be more likely to exhibit low sperm quality risk with increased adjusted odds ratios of 2.36 (95% confidence interval 1.03-5.39) compared to the first quartile. Our results reveal that seminal plasma TCS concentration was positively associated with low sperm quality risk.


Subject(s)
Semen , Triclosan , Male , Humans , Semen Analysis , Triclosan/adverse effects , Case-Control Studies , Chromatography, Liquid , Sperm Motility , Tandem Mass Spectrometry , Spermatozoa
14.
Cell Cycle ; 22(3): 303-315, 2023 02.
Article in English | MEDLINE | ID: mdl-36071682

ABSTRACT

Circular RNAs (circRNAs) have shown pivotal regulatory roles in multiple human ocular diseases, including age-related cataract (ARC). Here, we explored the role of circRNA mitogen-activated protein kinase kinase kinase 4 (circMAP3K4, hsa_circ_0078619) in ARC pathology and its associated mechanism. The expression of RNAs and proteins was examined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell viability, senescence, proliferation, and apoptosis were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, senescence-associated-ß-galactosidase (SA-ß-Gal) staining, 5-ethynyl-20-deoxyuridine (EdU) assay, and flow cytometry. The oxidative stress status of SRA01/04 cells was analyzed using the commercial kits. The interaction between microRNA-193a-3p (miR-193a-3p) and circMAP3K4 or phospholipase C delta 3 (PLCD3) was verified by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and RNA-pull down assay. CircMAP3K4 was significantly down-regulated in ARC patients and H2O2-induced SRA01/04 cells. H2O2 treatment restrained the viability and proliferation and promoted the senescence, apoptosis, and oxidative stress of SRA01/04 cells, and circMAP3K4 overexpression protected SRA01/04 cells from H2O2-induced dysfunction. MiR-193a-3p was a direct target of circMAP3K4, and circMAP3K4 overexpression-mediated protective effects in H2O2-induced SRA01/04 cells were largely reversed by the accumulation of miR-193a-3p. MiR-193a-3p interacted with the 3' untranslated region (3'UTR) of PLCD3, and PLCD3 knockdown largely overturned miR-193a-3p silencing-induced protective effects in H2O2-induced SRA01/04 cells. CircMAP3K4 up-regulated the expression of PLCD3 via sponging miR-193a-3p in SRA01/04 cells. In conclusion, circMAP3K4 protected SRA01/04 cells from H2O2-induced dysfunction in ARC through mediating miR-193a-3p/PLCD3 axis.


Subject(s)
Cataract , MicroRNAs , RNA, Circular , Humans , 3' Untranslated Regions , Apoptosis/genetics , Cataract/genetics , Cell Proliferation/genetics , Epithelial Cells , Hydrogen Peroxide/toxicity , MicroRNAs/genetics , Phospholipase C delta , RNA, Circular/genetics
15.
Lipids ; 58(1): 19-32, 2023 01.
Article in English | MEDLINE | ID: mdl-36253942

ABSTRACT

Currently, there is a global trend of rapid increase in obesity, especially among adolescents. The antibiotics cocktails (ABX) therapy is commonly used as an adjunctive treatment for gut microbiota related diseases, including obesity. However, the effects of broad-spectrum antibiotics alone on young obese hosts have rarely been reported. In the present study, the 3-week-old C57BL/6J male mice fed a high-fat diet (HFD) were intragastric administration with ampicillin, vancomycin, metronidazole or neomycin for 30 days. The lipid metabolites in plasma were assessed by biochemical assay kits, and genes related to lipid metabolite in the white adipose were assessed by qPCR. To further analyze the underlying mechanisms, the expression of genes related to lipid metabolism, inflammatory reactions and oxidative stress in the liver were determined by qPCR assay. In addition, the expression of oxidative damage-associated proteins in the liver were detected by western blot. The results showed that oral antibiotics exposure could reduce body weight and fat index in HFD-fed mice, concurrent with the increase of white adipose lipolysis genes and the decrease of hepatic lipogenic genes. Furthermore, antibiotics treatment could clearly reverse the HFD-induced elevation of oxidative damage-related proteins in the liver. Together, these findings will provide valuable clues into the effects of antibiotics on obesity.


Subject(s)
Diet, High-Fat , Lipid Metabolism , Mice , Male , Animals , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Liver/metabolism , Anti-Bacterial Agents/pharmacology , Lipids
16.
Nat Commun ; 14(1): 396, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693849

ABSTRACT

The discovery of natural adhesion phenomena and mechanisms has advanced the development of a new generation of tissue adhesives in recent decades. In this study, we develop a natural biological adhesive from snail mucus gel, which consists a network of positively charged protein and polyanionic glycosaminoglycan. The malleable bulk adhesive matrix can adhere to wet tissue through multiple interactions. The biomaterial exhibits excellent haemostatic activity, biocompatibility and biodegradability, and it is effective in accelerating the healing of full-thickness skin wounds in both normal and diabetic male rats. Further mechanistic study shows it effectively promotes the polarization of macrophages towards the anti-inflammatory phenotype, alleviates inflammation in chronic wounds, and significantly improves epithelial regeneration and angiogenesis. Its abundant heparin-like glycosaminoglycan component is the main active ingredient. These findings provide theoretical and material insights into bio-inspired tissue adhesives and bioengineered scaffold designs.


Subject(s)
Adhesives , Tissue Adhesives , Male , Rats , Animals , Snails , Mucus , Glycosaminoglycans , Hydrogels
17.
J Biomed Nanotechnol ; 18(1): 87-96, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35180902

ABSTRACT

To explore the effect of far-infrared nanomaterial eye relaxation system combined with visual-motor training in pseudomyopia, 120 patients with pseudomyopia were included in the experiment and randomly divided into nanomaterial and control groups. The control group received visual-motor training, and the nanomaterial group was treated with an eye relaxation system. This study found that nanozirconia and nanotitanium dioxide used in eye relaxation systems could maintain good stability in acidic and alkaline conditions. Additionally, nanozirconia could produce a warm effect, and nanotitanium dioxide had a clear sterilization effect. Moreover, the two abovementioned nanoparticles could be closely combined with fiberoptic materials. After treatment, the eye adjustment function, visual acuity, and diopter of the two groups were significantly improved, especially in the nanomaterial group. Additionally, using the nanomaterial eye relaxation system could better control intraocular pressure, reduce lens thickness, and improve the symptoms of eye fatigue. Furthermore, anxiety and depression were better reduced in the nanomaterial group, and their quality of life was greatly improved. Therefore, the far-infrared nanomaterial eye relaxation system combined with visual-motor training can be used as a new and effective scheme for pseudomyopia.


Subject(s)
Nanostructures , Quality of Life , Humans , Visual Acuity
18.
Neurosci Lett ; 791: 136907, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36209975

ABSTRACT

Parkinson's disease (PD) is one of the most common neurodegenerative disorders of aging that impairs predominately dopaminergic neurons. N6-methyladenosine (m6A) is the most prevalent form of internal RNA modification in eukaryotes and it plays an essential role in normal brain development and neurodegenerative diseases. The m6A status is dynamically modulated by diverse types of genes called "writers", "erasers" and "readers". However, whether these m6A regulators are perturbed in PD remains poorly understood. To clarify this point, we established a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The motor as well as learning and memory ability of mice were evaluated through and rotarod and Y maze spontaneous alternation tests. Morphological characteristics of tyrosine hydroxylase (TH)-positive cells were visualized using immunohistochemistry, while expressions of alpha-synuclein (α-syn) and TH were determined by using western blot. Furthermore, the expressions of the m6A regulators in the substantia nigra and striatum were evaluated by using qRT-PCR and western blot. As a result, the MPTP-induced PD mice suffered from learning and memory as well as motor defects. Additionally, there were significant TH+ neuron losses in the substantia nigra and striatum of MPTP-injected mice. In the PD mice, proteins including ALKBH5, IGF2BP2 were up-regulated in the substantia nigra, while YTHDF1 and FMR1 was down-regulated. For the striatum, FMR1 and CBLL1 were up-regulated, while IGF2BP3, METTL3 and RBM15 were down-regulated. The expression of genes at the mRNA level were partially in accordance with the protein changes. These findings indicate the m6A regulators may participate in PD pathogenesis.


Subject(s)
Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Mice, Inbred C57BL , Substantia Nigra/metabolism , Corpus Striatum/metabolism , Dopaminergic Neurons/metabolism , Tyrosine 3-Monooxygenase/metabolism , Disease Models, Animal , Fragile X Mental Retardation Protein/metabolism
19.
Environ Pollut ; 292(Pt B): 118184, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34715478

ABSTRACT

Polystyrene nanoparticles (PSNPs) are a newly emerging pollutant in the natural environment. However, due to the lack of sufficient toxicological studies in mammals, the potential effects of PSNPs on human health remain largely undefined. Therefore, in this study, young mice aged four weeks old were subjected to oral administration of 0, 0.2, 1, or 10 mg/kg PSNPs for 30 days. Our results demonstrated for the first time that oral exposure to PSNPs affected the expressions of mucus secretion-related genes and altered the community composition of intestinal microbiota, although this treatment did not cause behavioral impairments in young mice. No significant alterations in inflammatory or oxidative stress-related indicators were observed in the liver, lung, intestine, cortex or serum of PSNPs-treated animals. Moreover, exposure to PSNPs did not cause pathological changes in the liver, lung, or cortex tissues. Notably, although oral administration of PSNPs did not produce obvious toxic effects in the major organs of young mice, the possible toxicity of PSNPs remains unresolved and it may depend on the dose, exposure route and species. The potential hazardous effects of PSNPs still need to be systematically assessed, especially for children who are susceptible to exposure to nanoparticles.


Subject(s)
Nanoparticles , Polystyrenes , Animals , Biological Transport , Mice , Nanoparticles/toxicity , Oxidative Stress , Polystyrenes/metabolism , Polystyrenes/toxicity
20.
Sci Total Environ ; 811: 151407, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-34808154

ABSTRACT

Animal studies have revealed that exposure to neonicotinoid insecticides (NNIs) could compromise male reproductive function; however, related data on the occurrence of NNIs and their specific metabolites in human seminal plasma are scarce. To explore the potential effects of NNI exposure on male semen quality, we determined the concentrations of NNIs and some of their metabolites (collectively defined as mNNIs) in seminal plasma samples collected from men (n = 191) who visited a fertility clinic in Shijiazhuang, North China from 2018 to 2019. Associations between the mNNI concentrations and semen quality parameters were assessed using linear regression models, adjusting for important covariates. In the seminal plasma samples, desmethyl-acetamiprid (DM-ACE, detection frequency: 98.4%), imidacloprid-olefin (IMI-olefin, detection frequency: 86.5%), and desmethyl-clothianidin (DM-CLO, detection frequency: 70.8%) were frequently detected at median concentrations of 0.052, 0.003, and 0.007 ng/mL, respectively; meanwhile other compounds were detected at less than the method detection limits. In the single-mNNI models, the IMI-olefin concentration was associated with decreased progressive motility [IMI-olefin concentration: percent change (%Δ) = -17.0; 95% confidence interval (CI) = -30.3, -0.92; the highest tertile compared with the lowest tertile: %Δ = -21.1; 95% CI = -37.5, -0.23]. Similar results were found in the multiple-mNNIs models. No other inverse associations were found between the other mNNI concentrations and semen quality parameters. This is the first study to identify the occurrence of mNNIs in the seminal plasma and the potential associations of their concentrations with human semen quality parameters. These findings imply an inverse association between the IMI-olefin concentration and semen quality.


Subject(s)
Insecticides , Animals , China , Humans , Insecticides/analysis , Male , Neonicotinoids , Semen , Semen Analysis
SELECTION OF CITATIONS
SEARCH DETAIL