Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.417
Filter
Add more filters

Publication year range
1.
Immunity ; 56(7): 1485-1501.e7, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37315560

ABSTRACT

The interleukin 1 (IL-1) pathway signals through IL-1 receptor type 1 (IL-1R1) and emerges as a central mediator for systemic inflammation. Aberrant IL-1 signaling leads to a range of autoinflammatory diseases. Here, we identified a de novo missense variant in IL-1R1 (p.Lys131Glu) in a patient with chronic recurrent multifocal osteomyelitis (CRMO). Patient PBMCs showed strong inflammatory signatures, particularly in monocytes and neutrophils. The p.Lys131Glu substitution affected a critical positively charged amino acid, which disrupted the binding of the antagonist ligand, IL-1Ra, but not IL-1α or IL-1ß. This resulted in unopposed IL-1 signaling. Mice with a homologous mutation exhibited similar hyperinflammation and greater susceptibility to collagen antibody-induced arthritis, accompanied with pathological osteoclastogenesis. Leveraging the biology of the mutation, we designed an IL-1 therapeutic, which traps IL-1ß and IL-1α, but not IL-1Ra. Collectively, this work provides molecular insights and a potential drug for improved potency and specificity in treating IL-1-driven diseases.


Subject(s)
Osteomyelitis , Receptors, Interleukin-1 , Mice , Animals , Receptors, Interleukin-1/genetics , Osteomyelitis/drug therapy , Osteomyelitis/genetics , Osteomyelitis/pathology , Inflammation/genetics , Inflammation/pathology , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin 1 Receptor Antagonist Protein/genetics , Interleukin 1 Receptor Antagonist Protein/pharmacology , Signal Transduction , Mutation
2.
Annu Rev Genet ; 57: 245-274, 2023 11 27.
Article in English | MEDLINE | ID: mdl-37562411

ABSTRACT

Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.


Subject(s)
Hereditary Autoinflammatory Diseases , Simian Acquired Immunodeficiency Syndrome , Animals , Humans , Inflammation/genetics , Phenotype , Genomics , Hereditary Autoinflammatory Diseases/genetics
3.
Nat Immunol ; 18(11): 1271, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044244

ABSTRACT

This corrects the article DOI: 10.1038/ni.3777.

4.
Nat Immunol ; 18(8): 832-842, 2017 Jul 19.
Article in English | MEDLINE | ID: mdl-28722725

ABSTRACT

Autoinflammatory diseases were first recognized nearly 20 years ago as distinct clinical and immunological entities caused by dysregulation in the innate immune system. Since then, advances in genomic techniques have led to the identification of new monogenic disorders and their corresponding signaling pathways. Here we review these monogenic autoinflammatory diseases, ranging from periodic fever syndromes caused by dysregulated inflammasome-mediated production of the cytokine IL-1ß to disorders arising from perturbations in signaling by the transcription factor NF-κB, ubiquitination, cytokine signaling, protein folding, type I interferon production and complement activation, and we further examine their molecular mechanisms. We also explore the overlap among autoinflammation, autoimmunity and immunodeficiency, and pose a series of unanswered questions that are expected to be central in autoinflammatory disease research in the coming decade.


Subject(s)
Autoimmunity/immunology , Hereditary Autoinflammatory Diseases/immunology , Immunity, Innate/immunology , Immunologic Deficiency Syndromes/immunology , Inflammasomes/immunology , Inflammation/immunology , Complement Activation/immunology , Cytokines/immunology , Hereditary Autoinflammatory Diseases/genetics , Humans , Interferon Type I/immunology , Interleukin-1beta/immunology , NF-kappa B/immunology , Protein Folding , Signal Transduction , Ubiquitination/immunology
5.
Genome Res ; 34(2): 189-200, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38408788

ABSTRACT

Recent studies have revealed an unexplored population of long cell-free DNA (cfDNA) molecules in human plasma using long-read sequencing technologies. However, the biological properties of long cfDNA molecules (>500 bp) remain largely unknown. To this end, we have investigated the origins of long cfDNA molecules from different genomic elements. Analysis of plasma cfDNA using long-read sequencing reveals an uneven distribution of long molecules from across the genome. Long cfDNA molecules show overrepresentation in euchromatic regions of the genome, in sharp contrast to short DNA molecules. We observe a stronger relationship between the abundance of long molecules and mRNA gene expression levels, compared with short molecules (Pearson's r = 0.71 vs. -0.14). Moreover, long and short molecules show distinct fragmentation patterns surrounding CpG sites. Leveraging the cleavage preferences surrounding CpG sites, the combined cleavage ratios of long and short molecules can differentiate patients with hepatocellular carcinoma (HCC) from non-HCC subjects (AUC = 0.87). We also investigated knockout mice in which selected nuclease genes had been inactivated in comparison with wild-type mice. The proportion of long molecules originating from transcription start sites are lower in Dffb-deficient mice but higher in Dnase1l3-deficient mice compared with that of wild-type mice. This work thus provides new insights into the biological properties and potential clinical applications of long cfDNA molecules.


Subject(s)
Carcinoma, Hepatocellular , Cell-Free Nucleic Acids , Liver Neoplasms , Humans , Animals , Mice , Cell-Free Nucleic Acids/genetics , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , DNA/genetics , Genomics , Mice, Knockout , Endodeoxyribonucleases/genetics
6.
PLoS Pathog ; 20(2): e1012000, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300973

ABSTRACT

The early branching eukaryote Trypanosoma brucei divides uni-directionally along the longitudinal cell axis from the cell anterior toward the cell posterior, and the cleavage furrow ingresses along the cell division plane between the new and the old flagella of a dividing bi-flagellated cell. Regulation of cytokinesis in T. brucei involves actomyosin-independent machineries and trypanosome-specific signaling pathways, but the molecular mechanisms underlying cell division plane positioning remain poorly understood. Here we report a kinesin-13 family protein, KIN13-5, that functions downstream of FPRC in the cytokinesis regulatory pathway and determines cell division plane placement. KIN13-5 localizes to multiple cytoskeletal structures, interacts with FPRC, and depends on FPRC for localization to the site of cytokinesis initiation. Knockdown of KIN13-5 causes loss of microtubule bundling at both ends of the cell division plane, leading to mis-placement of the cleavage furrow and unequal cytokinesis, and at the posterior cell tip, causing the formation of a blunt posterior. In vitro biochemical assays demonstrate that KIN13-5 bundles microtubules, providing mechanistic insights into the role of KIN13-5 in cytokinesis and posterior morphogenesis. Altogether, KIN13-5 promotes microtubule bundle formation to ensure cleavage furrow placement and to maintain posterior cytoskeleton morphology in T. brucei.


Subject(s)
Cytokinesis , Trypanosoma brucei brucei , Cytokinesis/physiology , Trypanosoma brucei brucei/metabolism , Kinesins/genetics , Kinesins/metabolism , Cytoskeleton/metabolism , Microtubules/metabolism , Morphogenesis , Protozoan Proteins/metabolism
7.
Nature ; 577(7788): 109-114, 2020 01.
Article in English | MEDLINE | ID: mdl-31827280

ABSTRACT

Activation of RIPK1 controls TNF-mediated apoptosis, necroptosis and inflammatory pathways1. Cleavage of human and mouse RIPK1 after residues D324 and D325, respectively, by caspase-8 separates the RIPK1 kinase domain from the intermediate and death domains. The D325A mutation in mouse RIPK1 leads to embryonic lethality during mouse development2,3. However, the functional importance of blocking caspase-8-mediated cleavage of RIPK1 on RIPK1 activation in humans is unknown. Here we identify two families with variants in RIPK1 (D324V and D324H) that lead to distinct symptoms of recurrent fevers and lymphadenopathy in an autosomal-dominant manner. Impaired cleavage of RIPK1 D324 variants by caspase-8 sensitized patients' peripheral blood mononuclear cells to RIPK1 activation, apoptosis and necroptosis induced by TNF. The patients showed strong RIPK1-dependent activation of inflammatory signalling pathways and overproduction of inflammatory cytokines and chemokines compared with unaffected controls. Furthermore, we show that expression of the RIPK1 mutants D325V or D325H in mouse embryonic fibroblasts confers not only increased sensitivity to RIPK1 activation-mediated apoptosis and necroptosis, but also induction of pro-inflammatory cytokines such as IL-6 and TNF. By contrast, patient-derived fibroblasts showed reduced expression of RIPK1 and downregulated production of reactive oxygen species, resulting in resistance to necroptosis and ferroptosis. Together, these data suggest that human non-cleavable RIPK1 variants promote activation of RIPK1, and lead to an autoinflammatory disease characterized by hypersensitivity to apoptosis and necroptosis and increased inflammatory response in peripheral blood mononuclear cells, as well as a compensatory mechanism to protect against several pro-death stimuli in fibroblasts.


Subject(s)
Caspase 8/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Child , Child, Preschool , Female , HEK293 Cells , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , Male , Mice , Mice, Knockout , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Sequence Alignment , Sequence Homology, Amino Acid
8.
Nature ; 577(7788): 103-108, 2020 01.
Article in English | MEDLINE | ID: mdl-31827281

ABSTRACT

RIPK1 is a key regulator of innate immune signalling pathways. To ensure an optimal inflammatory response, RIPK1 is regulated post-translationally by well-characterized ubiquitylation and phosphorylation events, as well as by caspase-8-mediated cleavage1-7. The physiological relevance of this cleavage event remains unclear, although it is thought to inhibit activation of RIPK3 and necroptosis8. Here we show that the heterozygous missense mutations D324N, D324H and D324Y prevent caspase cleavage of RIPK1 in humans and result in an early-onset periodic fever syndrome and severe intermittent lymphadenopathy-a condition we term 'cleavage-resistant RIPK1-induced autoinflammatory syndrome'. To define the mechanism for this disease, we generated a cleavage-resistant Ripk1D325A mutant mouse strain. Whereas Ripk1-/- mice died postnatally from systemic inflammation, Ripk1D325A/D325A mice died during embryogenesis. Embryonic lethality was completely prevented by the combined loss of Casp8 and Ripk3, but not by loss of Ripk3 or Mlkl alone. Loss of RIPK1 kinase activity also prevented Ripk1D325A/D325A embryonic lethality, although the mice died before weaning from multi-organ inflammation in a RIPK3-dependent manner. Consistently, Ripk1D325A/D325A and Ripk1D325A/+ cells were hypersensitive to RIPK3-dependent TNF-induced apoptosis and necroptosis. Heterozygous Ripk1D325A/+ mice were viable and grossly normal, but were hyper-responsive to inflammatory stimuli in vivo. Our results demonstrate the importance of caspase-mediated RIPK1 cleavage during embryonic development and show that caspase cleavage of RIPK1 not only inhibits necroptosis but also maintains inflammatory homeostasis throughout life.


Subject(s)
Caspase 8/metabolism , Hereditary Autoinflammatory Diseases/metabolism , Mutation , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Animals , Caspase 3/metabolism , Female , Hereditary Autoinflammatory Diseases/genetics , Hereditary Autoinflammatory Diseases/pathology , Humans , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Pedigree , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Receptor-Interacting Protein Serine-Threonine Kinases/genetics
9.
Proc Natl Acad Sci U S A ; 120(17): e2220982120, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37075072

ABSTRACT

Cell-free DNA (cfDNA) fragmentation is nonrandom, at least partially mediated by various DNA nucleases, forming characteristic cfDNA end motifs. However, there is a paucity of tools for deciphering the relative contributions of cfDNA cleavage patterns related to underlying fragmentation factors. In this study, through non-negative matrix factorization algorithm, we used 256 5' 4-mer end motifs to identify distinct types of cfDNA cleavage patterns, referred to as "founder" end-motif profiles (F-profiles). F-profiles were associated with different DNA nucleases based on whether such patterns were disrupted in nuclease-knockout mouse models. Contributions of individual F-profiles in a cfDNA sample could be determined by deconvolutional analysis. We analyzed 93 murine cfDNA samples of different nuclease-deficient mice and identified six types of F-profiles. F-profiles I, II, and III were linked to deoxyribonuclease 1 like 3 (DNASE1L3), deoxyribonuclease 1 (DNASE1), and DNA fragmentation factor subunit beta (DFFB), respectively. We revealed that 42.9% of plasma cfDNA molecules were attributed to DNASE1L3-mediated fragmentation, whereas 43.4% of urinary cfDNA molecules involved DNASE1-mediated fragmentation. We further demonstrated that the relative contributions of F-profiles were useful to inform pathological states, such as autoimmune disorders and cancer. Among the six F-profiles, the use of F-profile I could inform the human patients with systemic lupus erythematosus. F-profile VI could be used to detect individuals with hepatocellular carcinoma, with an area under the receiver operating characteristic curve of 0.97. F-profile VI was more prominent in patients with nasopharyngeal carcinoma undergoing chemoradiotherapy. We proposed that this profile might be related to oxidative stress.


Subject(s)
Cell-Free Nucleic Acids , Humans , Mice , Animals , Cell-Free Nucleic Acids/genetics , Deoxyribonucleases/genetics , Mice, Knockout , Endonucleases/genetics , DNA Fragmentation , Endodeoxyribonucleases/genetics
10.
Circulation ; 149(24): 1903-1920, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38357802

ABSTRACT

BACKGROUND: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection. METHODS: Biotin-switch assay combined with liquid chromatography-tandem mass spectrometry was performed to identify the S-nitrosylated proteins in aortic tissue from both patients undergoing surgery for aortic dissection and Apoe-/- mice infused with angiotensin II. Angiotensin II-induced aortic aneurysm model and ß-aminopropionitrile-induced aortic aneurysm and dissection model were used to determine the role of SNO of Septin2 (SNO-Septin2) in aortic aneurysm and dissection development. RNA-sequencing analysis was performed to recapitulate possible changes in the transcriptome profile of SNO-Septin2 in macrophages in aortic aneurysm and dissection. Liquid chromatography-tandem mass spectrometry and coimmunoprecipitation were used to uncover the TIAM1-RAC1 (Ras-related C3 botulinum toxin substrate 1) axis as the downstream target of SNO-Septin2. Both R-Ketorolac and NSC23766 treatments were used to inhibit the TIAM1-RAC1 axis. RESULTS: Septin2 was identified S-nitrosylated at cysteine 111 (Cys111) in both aortic tissue from patients undergoing surgery for aortic dissection and Apoe-/- mice infused with Angiotensin II. SNO-Septin2 was demonstrated driving the development of aortic aneurysm and dissection. By RNA-sequencing, SNO-Septin2 in macrophages was demonstrated to exacerbate vascular inflammation and extracellular matrix degradation in aortic aneurysm. Next, TIAM1 (T lymphoma invasion and metastasis-inducing protein 1) was identified as a SNO-Septin2 target protein. Mechanistically, compared with unmodified Septin2, SNO-Septin2 reduced its interaction with TIAM1 and activated the TIAM1-RAC1 axis and consequent nuclear factor-κB signaling pathway, resulting in stronger inflammation and extracellular matrix degradation mediated by macrophages. Consistently, both R-Ketorolac and NSC23766 treatments protected against aortic aneurysm and dissection by inhibiting the TIAM1-RAC1 axis. CONCLUSIONS: SNO-Septin2 drives aortic aneurysm and dissection through coupling the TIAM1-RAC1 axis in macrophages and activating the nuclear factor-κB signaling pathway-dependent inflammation and extracellular matrix degradation. Pharmacological blockade of RAC1 by R-Ketorolac or NSC23766 may therefore represent a potential treatment against aortic aneurysm and dissection.


Subject(s)
Aortic Aneurysm , Aortic Dissection , Macrophages , Septins , T-Lymphoma Invasion and Metastasis-inducing Protein 1 , rac1 GTP-Binding Protein , Animals , Humans , Male , Mice , Angiotensin II/metabolism , Aortic Aneurysm/metabolism , Aortic Aneurysm/pathology , Aortic Aneurysm/genetics , Aortic Dissection/metabolism , Aortic Dissection/pathology , Aortic Dissection/genetics , Disease Models, Animal , Macrophages/metabolism , Macrophages/pathology , Mice, Inbred C57BL , Neuropeptides , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics , Septins/metabolism , Septins/genetics , Signal Transduction , T-Lymphoma Invasion and Metastasis-inducing Protein 1/metabolism , T-Lymphoma Invasion and Metastasis-inducing Protein 1/genetics
11.
PLoS Pathog ; 19(3): e1011270, 2023 03.
Article in English | MEDLINE | ID: mdl-36947554

ABSTRACT

Microtubules constitute a vital part of the cytoskeleton in eukaryotes by mediating cell morphogenesis, cell motility, cell division, and intracellular transport. The cytoskeleton of the parasite Trypanosoma brucei contains an array of subpellicular microtubules with their plus-ends positioned toward the posterior cell tip, where extensive microtubule growth and cytoskeleton remodeling take place during early cell cycle stages. However, the control mechanism underlying microtubule dynamics at the posterior cell tip remains elusive. Here, we report that the S-phase cyclin-dependent kinase-cyclin complex CRK2-CYC13 in T. brucei regulates microtubule dynamics by phosphorylating ß-tubulin on multiple evolutionarily conserved serine and threonine residues to inhibit its incorporation into cytoskeletal microtubules and promote its degradation in the cytosol. Consequently, knockdown of CRK2 or CYC13 causes excessive microtubule extension and loss of microtubule convergence at the posterior cell tip, leading to cytoskeleton elongation and branching. These findings uncover a control mechanism for cytoskeletal microtubule dynamics by which CRK2 phosphorylates ß-tubulin and fine-tunes cellular ß-tubulin protein abundance to restrict excess microtubule extension for the maintenance of cytoskeleton architecture.


Subject(s)
Trypanosoma brucei brucei , Tubulin , Tubulin/metabolism , Trypanosoma brucei brucei/metabolism , Microtubules/metabolism , Cytoskeleton/metabolism , Morphogenesis
12.
Hum Genomics ; 18(1): 79, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39010135

ABSTRACT

The analysis of genomic variations in offspring after implantation has been infrequently studied. In this study, we aim to investigate the extent of de novo mutations in humans from developing fetus to birth. Using high-depth whole-genome sequencing, 443 parent-offspring trios were studied to compare the results of de novo mutations (DNMs) between different groups. The focus was on fetuses and newborns, with DNA samples obtained from the families' blood and the aspirated embryonic tissues subjected to deep sequencing. It was observed that the average number of total DNMs in the newborns group was 56.26 (54.17-58.35), which appeared to be lower than that the multifetal reduction group, which was 76.05 (69.70-82.40) (F = 2.42, P = 0.12). However, after adjusting for parental age and maternal pre-pregnancy body mass index (BMI), significant differences were found between the two groups. The analysis was further divided into single nucleotide variants (SNVs) and insertion/deletion of a small number of bases (indels), and it was discovered that the average number of de novo SNVs associated with the multifetal reduction group and the newborn group was 49.89 (45.59-54.20) and 51.09 (49.22-52.96), respectively. No significant differences were noted between the groups (F = 1.01, P = 0.32). However, a significant difference was observed for de novo indels, with a higher average number found in the multifetal reduction group compared to the newborn group (F = 194.17, P < 0.001). The average number of de novo indels among the multifetal reduction group and the newborn group was 26.26 (23.27-29.05) and 5.17 (4.82-5.52), respectively. To conclude, it has been observed that the quantity of de novo indels in the newborns experiences a significant decrease when compared to that in the aspirated embryonic tissues (7-9 weeks). This phenomenon is evident across all genomic regions, highlighting the adverse effects of de novo indels on the fetus and emphasizing the significance of embryonic implantation and intrauterine growth in human genetic selection mechanisms.


Subject(s)
Fetus , Humans , Female , Pregnancy , Infant, Newborn , Male , Adult , Polymorphism, Single Nucleotide/genetics , Embryo Implantation/genetics , Genome, Human/genetics , INDEL Mutation/genetics , Genomics , Whole Genome Sequencing , High-Throughput Nucleotide Sequencing , Mutation/genetics , Fetal Development/genetics
13.
EMBO Rep ; 24(11): e56614, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37789674

ABSTRACT

ATPase family AAA domain-containing protein 1 (ATAD1) maintains mitochondrial homeostasis by removing mislocalized tail-anchored (TA) proteins from the mitochondrial outer membrane (MOM). Hepatitis C virus (HCV) infection induces mitochondrial fragmentation, and viral NS5B protein is a TA protein. Here, we investigate whether ATAD1 plays a role in regulating HCV infection. We find that HCV infection has no effect on ATAD1 expression, but knockout of ATAD1 significantly enhances HCV infection; this enhancement is suppressed by ATAD1 complementation. NS5B partially localizes to mitochondria, dependent on its transmembrane domain (TMD), and induces mitochondrial fragmentation, which is further enhanced by ATAD1 knockout. ATAD1 interacts with NS5B, dependent on its three internal domains (TMD, pore-loop 1, and pore-loop 2), and induces the proteasomal degradation of NS5B. In addition, we provide evidence that ATAD1 augments the antiviral function of MAVS upon HCV infection. Taken together, we show that the mitochondrial quality control exerted by ATAD1 can be extended to a novel antiviral function through the extraction of the viral TA-protein NS5B from the mitochondrial outer membrane.


Subject(s)
Hepacivirus , Hepatitis C , Humans , Hepacivirus/metabolism , Viral Proteins/metabolism , Hepatitis C/metabolism , Mitochondria/metabolism , Antiviral Agents , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
14.
PLoS Genet ; 18(9): e1010397, 2022 09.
Article in English | MEDLINE | ID: mdl-36108046

ABSTRACT

The activated spindle assembly checkpoint (SAC) potently inhibits the anaphase-promoting complex/cyclosome (APC/C) to ensure accurate chromosome segregation at anaphase. Early studies have recognized that the SAC should be silenced within minutes to enable rapid APC/C activation and synchronous segregation of chromosomes once all kinetochores are properly attached, but the underlying silencers are still being elucidated. Here, we report that the timely silencing of SAC in fission yeast requires dnt1+, which causes severe thiabendazole (TBZ) sensitivity and increased rate of lagging chromosomes when deleted. The absence of Dnt1 results in prolonged inhibitory binding of mitotic checkpoint complex (MCC) to APC/C and attenuated protein levels of Slp1Cdc20, consequently slows the degradation of cyclin B and securin, and eventually delays anaphase entry in cells released from SAC activation. Interestingly, Dnt1 physically associates with APC/C upon SAC activation. We propose that this association may fend off excessive and prolonged MCC binding to APC/C and help to maintain Slp1Cdc20 stability. This may allow a subset of APC/C to retain activity, which ensures rapid anaphase onset and mitotic exit once SAC is inactivated. Therefore, our study uncovered a new player in dictating the timing and efficacy of APC/C activation, which is actively required for maintaining cell viability upon recovery from the inhibition of APC/C by spindle checkpoint.


Subject(s)
Cell Cycle Proteins , Thiabendazole , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cdc20 Proteins/genetics , Cdc20 Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints/genetics , Securin/genetics , Spindle Apparatus/genetics , Spindle Apparatus/metabolism , Thiabendazole/metabolism
15.
Proc Natl Acad Sci U S A ; 119(44): e2209852119, 2022 11.
Article in English | MEDLINE | ID: mdl-36288287

ABSTRACT

Cell-free DNA (cfDNA) fragmentation patterns contain important molecular information linked to tissues of origin. We explored the possibility of using fragmentation patterns to predict cytosine-phosphate-guanine (CpG) methylation of cfDNA, obviating the use of bisulfite treatment and associated risks of DNA degradation. This study investigated the cfDNA cleavage profile surrounding a CpG (i.e., within an 11-nucleotide [nt] window) to analyze cfDNA methylation. The cfDNA cleavage proportion across positions within the window appeared nonrandom and exhibited correlation with methylation status. The mean cleavage proportion was ∼twofold higher at the cytosine of methylated CpGs than unmethylated ones in healthy controls. In contrast, the mean cleavage proportion rapidly decreased at the 1-nt position immediately preceding methylated CpGs. Such differential cleavages resulted in a characteristic change in relative presentations of CGN and NCG motifs at 5' ends, where N represented any nucleotide. CGN/NCG motif ratios were correlated with methylation levels at tissue-specific methylated CpGs (e.g., placenta or liver) (Pearson's absolute r > 0.86). cfDNA cleavage profiles were thus informative for cfDNA methylation and tissue-of-origin analyses. Using CG-containing end motifs, we achieved an area under a receiver operating characteristic curve (AUC) of 0.98 in differentiating patients with and without hepatocellular carcinoma and enhanced the positive predictive value of nasopharyngeal carcinoma screening (from 19.6 to 26.8%). Furthermore, we elucidated the feasibility of using cfDNA cleavage patterns to deduce CpG methylation at single CpG resolution using a deep learning algorithm and achieved an AUC of 0.93. FRAGmentomics-based Methylation Analysis (FRAGMA) presents many possibilities for noninvasive prenatal, cancer, and organ transplantation assessment.


Subject(s)
Cell-Free Nucleic Acids , Liver Neoplasms , Pregnancy , Female , Humans , Cell-Free Nucleic Acids/genetics , Biomarkers, Tumor/genetics , DNA Methylation , Liver Neoplasms/genetics , Epigenesis, Genetic , DNA/genetics , Cytosine , Guanine , Nucleotides , Phosphates
16.
Nano Lett ; 24(10): 3221-3230, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38416582

ABSTRACT

The hydrolysis of hydrides, represented by MgH2, delivers substantial capacity and presents an appealing prospect for an on-site hydrogen supply. However, the sluggish hydrolysis kinetics and low hydrogen yield of MgH2 caused by the formation of a passivation Mg(OH)2 layer hinder its practical application. Herein, we present a dual strategy encompassing microstructural design and compounding, leading to the successful synthesis of a core-shell-like nanostructured MgH2@Mg(BH4)2 composite, which demonstrates excellent hydrolysis performance. Specifically, the optimal composite with a low Ea of 9.05 kJ mol-1 releases 2027.7 mL g-1 H2 in 60 min, and its hydrolysis rate escalates to 1356.7 mL g-1 min-1 H2 during the first minute at room temperature. The nanocoating Mg(BH4)2 plays a key role in enhancing the hydrolysis kinetics through the release of heat and the formation of local concentration of Mg2+ field after its hydrolysis. This work offers an innovative concept for the design of hydrolysis materials.

17.
J Cell Mol Med ; 28(8): e18244, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520211

ABSTRACT

To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot, respectively. The levels of pro-inflammatory cytokines and oxidative stress factors were evaluated using enzyme-linked immunosorbent assay and biochemical kit, respectively. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)-1ß treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL-1ß in SFs, while overexpression of TRIM52 enhanced IL-1ß induction. Meanwhile, IL-1ß induction activated toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL-1ß-induced proliferation and inflammatory response by inhibiting TLR4/NF-κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL-1ß-induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL-1ß-induced SFs. The above functions were mediated by the activation of TLR4/NF- κB signal pathway.


Subject(s)
Osteoarthritis , Toll-Like Receptor 4 , Animals , Humans , Rats , Cell Proliferation , Fibroblasts/metabolism , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , Oxidative Stress , Temporomandibular Joint/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
18.
J Biol Chem ; 299(11): 105340, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37838178

ABSTRACT

The unicellular protozoan Trypanosoma brucei has a single flagellum that is involved in cell motility, cell morphogenesis, and cell division. Inheritance of the newly assembled flagellum during the cell cycle requires its correct positioning, which depends on the faithful duplication or segregation of multiple flagellum-associated cytoskeletal structures, including the basal body, the flagellum attachment zone, and the hook complex. Along the flagellum attachment zone sites a set of four microtubules termed the microtubule quartet (MtQ), whose molecular function remains enigmatic. We recently reported that the MtQ-localized protein NHL1 interacts with the microtubule-binding protein TbSpef1 and regulates flagellum inheritance by promoting basal body rotation and segregation. Here, we identified a TbSpef1- and NHL1-associated protein named SNAP1, which co-localizes with NHL1 and TbSpef1 at the proximal portion of the MtQ, depends on TbSpef1 for localization and is required for NHL1 localization to the MtQ. Knockdown of SNAP1 impairs the rotation and segregation of the basal body, the elongation of the flagellum attachment zone filament, and the positioning of the newly assembled flagellum, thereby causing mis-placement of the cell division plane, a halt in cleavage furrow ingression, and an inhibition of cytokinesis completion. Together, these findings uncover a coordinating role of SNAP1 with TbSpef1 and NHL1 in facilitating flagellum positioning and cell division plane placement for the completion of cytokinesis.


Subject(s)
Flagella , Microtubules , Protozoan Proteins , Trypanosoma brucei brucei , Basal Bodies/metabolism , Cell Division , Chromosome Segregation , Flagella/metabolism , Microtubules/metabolism , Protozoan Proteins/metabolism , Trypanosoma brucei brucei/metabolism
19.
Gene Ther ; 31(5-6): 324-334, 2024 05.
Article in English | MEDLINE | ID: mdl-38627469

ABSTRACT

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Macrophages , Microglia , Parkinson Disease , Animals , Male , Mice , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Disease Models, Animal , Dopaminergic Neurons/metabolism , Exosomes/metabolism , Genetic Therapy/methods , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Hematopoietic Stem Cell Transplantation/methods , Hematopoietic Stem Cells/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Parkinson Disease/therapy , Parkinson Disease/metabolism , Substantia Nigra/metabolism
20.
BMC Genomics ; 25(1): 587, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862915

ABSTRACT

BACKGROUND: The field of bee genomics has considerably advanced in recent years, however, the most diverse group of honey producers on the planet, the stingless bees, are still largely neglected. In fact, only eleven of the ~ 600 described stingless bee species have been sequenced, and only three using a long-read (LR) sequencing technology. Here, we sequenced the nuclear and mitochondrial genomes of the most common, widespread and broadly reared stingless bee in Brazil and other neotropical countries-Tetragonisca angustula (popularly known in Brazil as jataí). RESULTS: A total of 48.01 Gb of DNA data were generated, including 2.31 Gb of Pacific Bioscience HiFi reads and 45.70 Gb of Illumina short reads (SRs). Our preferred assembly comprised 683 contigs encompassing 284.49 Mb, 62.84 Mb of which (22.09%) corresponded to 445,793 repetitive elements. N50, L50 and complete BUSCOs reached 1.02 Mb, 91 contigs and 97.1%, respectively. We predicted that the genome of T. angustula comprises 17,459 protein-coding genes and 4,108 non-coding RNAs. The mitogenome consisted of 17,410 bp, and all 37 genes were found to be on the positive strand, an unusual feature among bees. A phylogenomic analysis of 26 hymenopteran species revealed that six odorant receptor orthogroups of T. angustula were found to be experiencing rapid evolution, four of them undergoing significant contractions. CONCLUSIONS: Here, we provided the first nuclear and mitochondrial genome assemblies for the ecologically and economically important T. angustula, the fourth stingless bee species to be sequenced with LR technology thus far. We demonstrated that even relatively small amounts of LR data in combination with sufficient SR data can yield high-quality genome assemblies for bees.


Subject(s)
Genome, Mitochondrial , Phylogeny , Animals , Bees/genetics , Cell Nucleus/genetics , Molecular Sequence Annotation , Pollination , Genomics/methods , Genome, Insect , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL