Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Plant Biol ; 22(1): 314, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773646

ABSTRACT

BACKGROUND: Heterosis is a phenomenon that hybrids show superior performance over their parents. The successful utilization of heterosis has greatly improved rice productivity, but the molecular basis of heterosis remains largely unclear. RESULTS: Here, the transcriptomes of young panicles and leaves of the two widely grown two-line super hybrid rice varieties (Jing-Liang-You-Hua-Zhan (JLYHZ) and Long-Liang-You-Hua-Zhan (LLYHZ)) and their parents were analyzed by RNA-seq. Transcriptome profiling of the hybrids revealed 1,778 ~ 9,404 differentially expressed genes (DEGs) in two tissues, which were identified by comparing with their parents. GO, and KEGG enrichment analysis showed that the pathways significantly enriched in both tissues of two hybrids were all related to yield and resistance, like circadian rhythm (GO:0,007,623), response to water deprivation (GO:0,009,414), and photosynthetic genes (osa00196). Allele-specific expression genes (ASEGs) were also identified in hybrids. The ASEGs were most significantly enriched in ionotropic glutamate receptor signaling pathway, which was hypothesized to be potential amino acid sensors in plants. Moreover, the ASEGs were also differentially expressed between parents. The number of variations in ASEGs is higher than expected, especially for large effect variations. The DEGs and ASEGs are the potential reasons for the formation of heterosis in the two elite super hybrid rice. CONCLUSIONS: Our results provide a comprehensive understanding of the heterosis of two-line super hybrid rice and facilitate the exploitation of heterosis in hybrid rice breeding with high yield heterosis.


Subject(s)
Hybrid Vigor , Oryza , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Genome, Plant , Hybrid Vigor/genetics , Hybridization, Genetic , Oryza/genetics , Oryza/metabolism , Plant Breeding , Transcriptome
2.
Sci Rep ; 11(1): 6053, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33723281

ABSTRACT

Cadmium (Cd) contamination of rice is a serious food safety issue that has recently been gaining significant public attention. Therefore, reduction of Cd accumulation in rice grains is an important objective of rice breeding. The use of favourable alleles of Cd accumulating genes using marker-assisted selection (MAS) is theoretically feasible. In this study, we validated a segment covering OsHMA3-OsNramp5-OsNramp1 on chromosome 7 of japonica for establishing low-cadmium accumulating indica rice variety. The OsHMA3-OsNramp5-OsNramp1jap haplotype significantly decreased grain Cd concentration in middle-season indica genetic background. The improved 9311 carrying the OsHMA3-OsNramp5-OsNramp1jap haplotype with recurrent parent genome recovery of up to 91.6% resulted in approximately 31.8% decrease in Cd accumulation in the grain and with no penalty on yield. There is a genetic linkage-drag between OsHMA3-OsNramp5-OsNramp1 jap and the gene conditioning heading to days (HTD) in the early-season indica genetic background. Because the OsHMA3-OsNramp5-OsNramp1-Ghd7jap haplotype significantly increases grain Cd concentration and prolongs growth duration, the linkage-drag between OsHMA3-OsNramp5-OsNramp1 and Ghd7 should be broken down by large segregating populations or gene editing. A novel allele of OsHMA3 was identified from a wide-compatibility japonica cultivar, the expression differences of OsNramp1 and OsNramp5 in roots might contribute the Cd accumulating variation between japonica and indica variety.


Subject(s)
Cadmium/metabolism , Chromosomes, Plant/genetics , Oryza , Plant Breeding , Chromosomes, Plant/metabolism , Oryza/genetics , Oryza/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL