Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 177
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 170(1): 114-126.e15, 2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28666113

ABSTRACT

Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C2H2-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H2O2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.


Subject(s)
Oryza/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Base Sequence , Breeding , Disease Resistance , Gene Knockout Techniques , Genome, Plant , Genome-Wide Association Study , Plant Diseases , Promoter Regions, Genetic
2.
Molecules ; 29(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38398658

ABSTRACT

Dendrobium nobile is a traditional Chinese herb with anti-inflammatory, antioxidant, and neuroprotective properties. However, its antiaging effects are unclear. Herein, we studied the aging-related functions and the mechanism of action of the alcohol extract of Dendrobium nobile (DnAE) in the model organism Caenorhabditis elegans. The results indicated that 1 mg/mL DnAE slowed lipofuscin accumulation, decreased the levels of reactive oxygen species, elevated superoxide dismutase activity, enhanced oxidative and heat stress resistance, extended the lifespan of nematodes, protected their dopamine neurons from 6-hydroxydopamine-induced neurodegeneration, and reduced Aß-induced neurotoxicity. DnAE upregulated the mRNA expression of the transcription factors DAF-16 and HSF-1, promoted the nuclear localization of DAF-16, and enhanced the fluorescence intensity of HSP-16.2. However, it had no effect on the lifespan of DAF-16 mutants. Thus, DnAE can significantly extend lifespan, enhance heat stress tolerance, and delay age-related diseases through a DAF-16-dependent pathway.


Subject(s)
Caenorhabditis elegans Proteins , Dendrobium , Animals , Longevity , Caenorhabditis elegans , Dendrobium/metabolism , Oxidative Stress , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Reactive Oxygen Species/metabolism , Heat Shock Transcription Factors/metabolism , Ethanol/metabolism , Forkhead Transcription Factors/metabolism
3.
J Cell Mol Med ; 27(18): 2675-2683, 2023 09.
Article in English | MEDLINE | ID: mdl-37539493

ABSTRACT

Spi-1 proto-oncogene (SPI1) plays a vital role in carcinogenesis. Our work aimed to investigate the potential regulatory mechanism of SPI1 in melanoma. The mRNA and protein levels were measured via qRT-PCR and Western blotting. Cell viability was assessed by CCK-8 assay. The target relationship between SPI1 and hexokinase 2 (HK2) was determined using dual-luciferase reporter detection. ChIP was conducted to confirm the targeted relationship between SPI1 and the HK2 promoter. Immunohistochemistry analysis was conducted to measure the positive cell number of SPI1 and HK2 in melanoma tissues. The cell migration abilities were determined using a wound healing assay. Glucose consumption, pyruvate dehydrogenase activity, lactate production and ATP levels were measured to assess glycolysis. SPI1 transcription in melanoma cells and tissues was dramatically higher than that in adjacent normal tissues and epidermal melanocyte HEMa-LP, respectively. Knockdown of SPI1 restrained cell viability, metastasis and glycolysis in melanoma cells. SPI1 directly targeted HK2, and knockdown of SPI1 repressed HK2 expression. Overexpression of HK2 weakened the inhibitory effects of SPI1 knockdown on the viability, metastasis and glycolysis of melanoma cells. The serine-threonine kinase 1 (AKT1)/mammalian target of rapamycin (mTOR) axis is involved in melanoma progression. SPI1 knockdown restrained melanoma cell proliferation, metastasis and glycolysis by regulating the AKT1/mTOR pathway.


Subject(s)
Melanoma , MicroRNAs , Humans , MicroRNAs/genetics , Hexokinase/genetics , Hexokinase/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Melanoma/genetics , Melanoma/pathology , Cell Proliferation/genetics , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Melanoma, Cutaneous Malignant
4.
Nutr Neurosci ; 26(1): 11-24, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34927571

ABSTRACT

OBJECTIVES: Parkinson's disease (PD) is the second most common neurodegenerative disease. Chlorogenic acid (CGA) is a polyphenolic substance derived from various medicinal plants. Although CGA is reported to have potential anti-PD effect, the beneficial effect and the underlying mechanism remain unclear. In this study, we aimed to further investigate the protective effect and clarify the mechanism of action of CGA in Caenorhabditis elegans (C. elegans) models of PD. METHODS: Measurements of a-synuclein aggregation, movement disorders, and lipid, ROS and malondialdehyde (MDA) contents were observed in NL5901 nematodes. Determinations of dopamine (DA) neuron degeneration, food perception, and ROS content were performed in 6-OHDA-exposed BZ555 nematodes. The autophagy activation of CGA was monitored using DA2123 and BC12921 nematodes. Meanwhile, RNAi technology was employed to knockdown the autophagy-related genes and investigate whether the anti-PD effect of CGA was associated with autophagy induction in C. elegans. RESULTS: CGA significantly reduced α-synuclein aggregation, improved motor disorders, restored lipid content, and decreased ROS and MDA contents in NL5901 nematodes. Meanwhile, CGA inhibited DA neuron-degeneration and improved food-sensing behavior in 6-OHDA-exposed BZ555 nematodes. In addition, CGA increased the number of GFP::LGG-1 foci in DA2123 nematodes and degraded p62 protein in BC12921 nematodes. Meanwhile, CGA up-regulated the expression of autophagy-related genes in NL5901 nematodes. Moreover, the anti-PD effect of CGA was closely related to autophagy induction via increasing the expression of autophagy-related genes, including unc-51, bec-1, vps-34, and lgg-1. CONCLUSIONS: The present study indicates that CGA exerts neuroprotective effect in C. elegans via autophagy induction.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Animals , Parkinson Disease/metabolism , Caenorhabditis elegans , Chlorogenic Acid/pharmacology , Chlorogenic Acid/metabolism , Animals, Genetically Modified , Neurodegenerative Diseases/metabolism , Reactive Oxygen Species/metabolism , Oxidopamine , Nerve Degeneration , Autophagy , Lipids , Dopaminergic Neurons , Disease Models, Animal
5.
Phytother Res ; 37(10): 4639-4654, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37394882

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder without an effective cure. Natural products, while showing promise as potential therapeutics for AD, remain underexplored. AIMS: This study was conducted with the goal of identifying potential anti-AD candidates from natural sources using Caenorhabditis elegans (C. elegans) AD-like models and exploring their mechanisms of action. MATERIALS & METHODS: Our laboratory's in-house herbal extract library was utilized to screen for potential anti-AD candidates using the C. elegans AD-like model CL4176. The neuroprotective effects of the candidates were evaluated in multiple C. elegans AD-like models, specifically targeting Aß- and Tau-induced pathology. In vitro validation was conducted using PC-12 cells. To investigate the role of autophagy in mediating the anti-AD effects of the candidates, RNAi bacteria and autophagy inhibitors were employed. RESULTS: The ethanol extract of air-dried fruits of Luffa cylindrica (LCE), a medicine-food homology species, was found to inhibit Aß- and Tau-induced pathology (paralysis, ROS production, neurotoxicity, and Aß and pTau deposition) in C. elegans AD-like models. LCE was non-toxic and enhanced C. elegans' health. It was shown that LCE activates autophagy and its anti-AD efficacy is weakened with the RNAi knockdown of autophagy-related genes. Additionally, LCE induced mTOR-mediated autophagy, reduced the expression of AD-associated proteins, and decreased cell death in PC-12 cells, which was reversed by autophagy inhibitors (bafilomycin A1 and 3-methyladenine). DISCUSSION: LCE, identified from our natural product library, emerged as a valuable autophagy enhancer that effectively protects against neurodegeneration in multiple AD-like models. RNAi knockdown of autophagy-related genes and cotreatment with autophagy inhibitors weakened its anti-AD efficacy, implying a critical role of autophagy in mediating the neuroprotective effects of LCE. CONCLUSION: Our findings highlight the potential of LCE as a functional food or drug for targeting AD pathology and promoting human health.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Luffa , Neuroprotective Agents , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Luffa/metabolism , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Fruit/metabolism , Autophagy , Disease Models, Animal , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/pharmacology
6.
Int J Mol Sci ; 24(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36614259

ABSTRACT

The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.


Subject(s)
Biocompatible Materials , Spinal Cord Injuries , Humans , Biocompatible Materials/therapeutic use , Spinal Cord Injuries/drug therapy , Spinal Cord , Regenerative Medicine , Stem Cell Transplantation , Nerve Regeneration
7.
Int J Mol Sci ; 24(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36674552

ABSTRACT

Platelets are the second most abundant blood component after red blood cells and can participate in a variety of physiological and pathological functions. Beyond its traditional role in hemostasis and thrombosis, it also plays an indispensable role in inflammatory diseases. However, thrombocytopenia is a common hematologic problem in the clinic, and it presents a proportional relationship with the fatality of many diseases. Therefore, the prevention and treatment of thrombocytopenia is of great importance. The expression of Toll-like receptors (TLRs) is one of the most relevant characteristics of thrombopoiesis and the platelet inflammatory function. We know that the TLR family is found on the surface or inside almost all cells, where they perform many immune functions. Of those, TLR2 and TLR4 are the main stress-inducing members and play an integral role in inflammatory diseases and platelet production and function. Therefore, the aim of this review is to present and discuss the relationship between platelets, inflammation and the TLR family and extend recent research on the influence of the TLR2 and TLR4 pathways and the regulation of platelet production and function. Reviewing the interaction between TLRs and platelets in inflammation may be a research direction or program for the treatment of thrombocytopenia-related and inflammatory-related diseases.


Subject(s)
Thrombocytopenia , Thrombopoiesis , Humans , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptors , Thrombocytopenia/metabolism , Inflammation
8.
Int J Mol Sci ; 24(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38003724

ABSTRACT

Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with current treatments offering only modest relief and often bringing unwanted side effects, necessitating the exploration of more effective and safer drugs. In this study, we employed the Caenorhabditis elegans (C. elegans) model, specifically the AD-like CL4176 strain expressing the human Aß(1-42) protein, to investigate the potential of Reineckia carnea extract and its fractions. Our results showed that the Reineckia carnea ether fraction (REF) notably diminished the paralysis rates of CL4176 worms. Additionally, REF also attenuated the neurotoxicity effects prompted by Tau proteins in the BR5270 worms. Moreover, REF was observed to counteract the accumulation of Aß and pTau proteins and their induced oxidative stress in C. elegans AD-like models. Mechanistic studies revealed that REF's benefits were associated with the induction of autophagy in worms; however, these protective effects were nullified when autophagy-related genes were suppressed using RNAi bacteria. Together, these findings highlight Reineckia carnea ether fraction as a promising candidate for AD treatment, warranting further investigation into its autophagy-inducing components and their molecular mechanisms.


Subject(s)
Alzheimer Disease , Caenorhabditis elegans Proteins , Animals , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Caenorhabditis elegans/metabolism , Animals, Genetically Modified , Amyloid beta-Peptides/metabolism , Ether/pharmacology , Caenorhabditis elegans Proteins/metabolism , Ethyl Ethers/metabolism , Ethyl Ethers/pharmacology , Ethyl Ethers/therapeutic use , Ethers/pharmacology , Disease Models, Animal
9.
Clin Immunol ; 244: 109093, 2022 11.
Article in English | MEDLINE | ID: mdl-35944881

ABSTRACT

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Emerging evidence indicates that the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated, which results in a cytokine storm at the late stage of COVID-19. Autophagy regulation is involved in the infection and replication of SARS-CoV-2 at the early stage and the inhibition of NLRP3 inflammasome-mediated lung inflammation at the late stage of COVID-19. Here, we discuss the autophagy regulation at different stages of COVID-19. Specifically, we highlight the therapeutic potential of autophagy activators in COVID-19 by inhibiting the NLRP3 inflammasome, thereby avoiding the cytokine storm. We hope this review provides enlightenment for the use of autophagy activators targeting the inhibition of the NLRP3 inflammasome, specifically the combinational therapy of autophagy modulators with the inhibitors of the NLRP3 inflammasome, antiviral drugs, or anti-inflammatory drugs in the fight against COVID-19.


Subject(s)
COVID-19 , Pneumonia , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/pharmacology , Autophagy , Cytokine Release Syndrome , Humans , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , SARS-CoV-2
10.
J Nanobiotechnology ; 20(1): 542, 2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36575429

ABSTRACT

Synthetic nanoparticles with surface bioconjugation are promising platforms for targeted therapy, but their simple biological functionalization is still a challenging task against the complex intercellular environment. Once synthetic nanoparticles enter the body, they are phagocytosed by immune cells by the immune system. Recently, the cell membrane camouflage strategy has emerged as a novel therapeutic tactic to overcome these issues by utilizing the fundamental properties of natural cells. Macrophage, a type of immune system cells, plays critical roles in various diseases, including cancer, atherosclerosis, rheumatoid arthritis, infection and inflammation, due to the recognition and engulfment function of removing substances and pathogens. Macrophage membranes inherit the surface protein profiles and biointerfacing properties of source cells. Therefore, the macrophage membrane cloaking can protect synthetic nanoparticles from phagocytosis by the immune cells. Meanwhile, the macrophage membrane can make use of the natural correspondence to accurately recognize antigens and target inflamed tissue or tumor sites. In this review, we have summarized the advances in the fabrication, characterization and homing capacity of macrophage membrane cloaking nanoparticles in various diseases, including cancers, immune diseases, cardiovascular diseases, central nervous system diseases, and microbial infections. Although macrophage membrane-camouflaged nanoparticles are currently in the fetal stage of development, there is huge potential and challenge to explore the conversion mode in the clinic.


Subject(s)
Biomimetic Materials , Nanoparticles , Neoplasms , Humans , Biomimetics , Cell Membrane/metabolism , Macrophages/pathology , Drug Delivery Systems , Neoplasms/drug therapy , Neoplasms/pathology , Nanoparticles/therapeutic use , Biomimetic Materials/pharmacology
11.
PLoS Genet ; 15(6): e1008206, 2019 06.
Article in English | MEDLINE | ID: mdl-31194741

ABSTRACT

The septation initiation network (SIN), composed of a conserved SepH (Cdc7p) kinase cascade, plays an essential role in fungal cytokinesis/septation and conidiation for asexual reproduction, while the mitogen-activated protein kinase (MAPK) pathway depends on successive signaling cascade phosphorylation to sense and respond to stress and environmental factors. In this study, a SepH suppressor-PomA in the filamentous fungus A. nidulans is identified as a negative regulator of septation and conidiation such that the pomA mutant is able to cure defects of sepH1 in septation and conidiation and overexpression of pomA remarkably suppresses septation. Under the normal cultural condition, SepH positively regulates the phosphorylation of MAPK-HogA, while PomA reversely affects this process. In the absence of PbsB (MAPKK, a putative upstream member of HogA), PomA and SepH are unable to affect the phosphorylation level of HogA. Under the osmostress condition, the induced phosphorylated HogA is capable of bypassing the requirement of SepH, a key player for early events during cytokinesis but not for MobA/SidB, the last one in the core SIN protein kinase cascade, indicating the osmotic stimuli-induced septation is capable of bypassing requirement of SepH but unable to bypass the whole SIN requirement. Findings demonstrate that crosstalk exists between the SIN and MAPK pathways. PomA and SepH indirectly regulate HogA phosphorylation through affecting HogA-P upstream kinases.


Subject(s)
Aspergillus nidulans/genetics , Fungal Proteins/genetics , Mitogen-Activated Protein Kinases/genetics , Reproduction, Asexual/genetics , Aspergillus nidulans/growth & development , Cell Cycle Proteins/genetics , Cytokinesis/genetics , Mutation/genetics , Nuclear Proteins/genetics , Osmotic Pressure , Phosphorylation/genetics , Polymorphism, Single Nucleotide/genetics , Protein Kinases/genetics , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction/genetics
12.
Pharmacol Res ; 170: 105697, 2021 08.
Article in English | MEDLINE | ID: mdl-34062240

ABSTRACT

With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.


Subject(s)
Aging/drug effects , Caenorhabditis elegans/drug effects , Complement C3/metabolism , Gastrointestinal Microbiome/drug effects , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Polygala , Saponins/pharmacology , Age Factors , Aging/genetics , Aging/immunology , Aging/metabolism , Animals , Behavior, Animal/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cell Line, Tumor , Down-Regulation , Longevity/drug effects , Male , Maze Learning/drug effects , Mice, Inbred C57BL , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/prevention & control , Neuroprotective Agents/isolation & purification , Oxidative Stress/drug effects , Plant Extracts/isolation & purification , Plant Roots , Polygala/chemistry , Saponins/isolation & purification , Spatial Memory/drug effects , Transcriptome
13.
Proc Natl Acad Sci U S A ; 115(12): 3174-3179, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29432165

ABSTRACT

Crops carrying broad-spectrum resistance loci provide an effective strategy for controlling infectious disease because these loci typically confer resistance to diverse races of a pathogen or even multiple species of pathogens. Despite their importance, only a few crop broad-spectrum resistance loci have been reported. Here, we report the identification and characterization of the rice bsr-k1 (broad-spectrum resistance Kitaake-1) mutant, which confers broad-spectrum resistance against Magnaporthe oryzae and Xanthomonas oryzae pv oryzae with no major penalty on key agronomic traits. Map-based cloning reveals that Bsr-k1 encodes a tetratricopeptide repeats (TPRs)-containing protein, which binds to mRNAs of multiple OsPAL (OsPAL1-7) genes and promotes their turnover. Loss of function of the Bsr-k1 gene leads to accumulation of OsPAL1-7 mRNAs in the bsr-k1 mutant. Furthermore, overexpression of OsPAL1 in wild-type rice TP309 confers resistance to M. oryzae, supporting the role of OsPAL1 Our discovery of the bsr-k1 allele constitutes a significant conceptual advancement and provides a valuable tool for breeding broad-spectrum resistant rice.


Subject(s)
Oryza/physiology , Plant Diseases/genetics , Plant Proteins/genetics , RNA-Binding Proteins/genetics , Cytoplasm/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Magnaporthe/pathogenicity , Mutation , Oryza/genetics , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Protein Domains , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Repetitive Sequences, Amino Acid , Xanthomonas/pathogenicity
14.
Phytother Res ; 35(2): 954-973, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32893437

ABSTRACT

Blood-brain barrier (BBB) dysfunction has been implicated in Alzheimer's disease (AD) and is closely linked to the release of proinflammatory cytokines in brain capillary endothelial cells. We have previously reported that lychee seed polyphenols (LSP) exerted anti-neuroinflammatory effect. In this study, we aimed to explore the protective effect of LSP on BBB integrity. The monolayer permeability of bEnd.3 cells, and the mRNA level and protein expression of tight junction proteins (TJs), including Claudin 5, Occludin, and ZO-1, were examined. In addition, the inhibition of Aß(25-35)-induced NLRP3 inflammasome activation, and the autophagy induced by LSP were investigated by detecting the expression of NLRP3, caspase-1, ASC, LC3, AMPK, mTOR, and ULK1. Furthermore, the cognitive function and the expression of TJs, NLRP3, caspase-1, IL-1ß, and p62 were determined in APP/PS1 mice. The results showed that LSP significantly decreased the monolayer permeability and inhibited the NLRP3 inflammasome in Aß(25-35)-induced bEnd3 cells. In addition, LSP induced autophagy via the AMPK/mTOR/ULK1 pathway in bEnd.3 cells, and improved the spatial learning and memory function, increased the TJs expression, and inhibited the expression of NLRP3, caspase-1, IL-1ß, and p62 in APP/PS1 mice. Therefore, LSP protects BBB integrity in AD through inhibiting Aß(25-35)-induced NLRP3 inflammasome activation via the AMPK/mTOR/ULK1-mediated autophagy.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Alzheimer Disease/drug therapy , Autophagy/drug effects , Blood-Brain Barrier/drug effects , Inflammasomes/drug effects , Litchi/chemistry , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Polyphenols/therapeutic use , Seeds/chemistry , Animals , Male , Mice , Mice, Transgenic , Polyphenols/pharmacology , Transfection
15.
Biogerontology ; 21(5): 669-682, 2020 10.
Article in English | MEDLINE | ID: mdl-32506187

ABSTRACT

Aging is related to the lowered overall functioning and increased risk for various age-related diseases in humans. Tectochrysin is a flavonoid compound and rich in a traditional Chinese Medicine Alpinia oxyphylla Miq., which has antioxidant, anti-inflammatory, anti-cancer, anti-bacterial, anti-diarrhea, hepatoprotective, and neuro-protective effects. Therefore, we tested if tectochrysin had an effect on aging in Caenorhabditis elegans (C. elegans). Our results showed that tectochrysin could extend the lifespan of C. elegans by up to 21.0%, delay the age-related decline of body movement, improve high temperature-stress resistance and anti-infection capacity, and protected worms against Aß1-42-induced toxicity. Tectochrysin could not extend the lifespan of the mutants from genes daf-2, daf-16, eat-2, aak-2, skn-1, and hsf-1. Tectochrysin could increase the expression of DAF-16 regulated genes. The extension of lifespan by tectochrysin requires FOXO/DAF-16 and HSF-1. Overall, our findings suggest that tectochrysin may have a potential effect on extending lifespan and age-related diseases.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Flavonoids/pharmacology , Longevity , Animals , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism , Stress, Physiological , Transcription Factors/metabolism
16.
J Fluoresc ; 30(1): 121-129, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31930435

ABSTRACT

In this study, an imidazole-coumarin based fluorescent probe was developed for the selective and sensitive detection of Ag+ in aqueous solution. Using a combination of Job plot, NMR titrations, and DFT calculations, the binding properties between Ag+ and the probe were deeply investigated, and the results revealed a 1:1 binding stoichiometry between the probe and Ag+ with a binding constant of 1.02 × 106 M-1. The detection limit was found to be 150 nM, which satisfies the requirement for the quantitative detection of Ag+ in real water samples. Moreover, the new probe, Ic, was successfully applied to sense Ag+ in HeLa and HepG2 cells as well as in C. elegans, indicating that it could be a useful tool for the environmental monitoring of Ag+ pollution. These results demonstrated that Ic could serve as a high-efficiency and low-cost fluorescent probe for tracking Ag+ in an aquatic environment and biological organisms.


Subject(s)
Caenorhabditis elegans/cytology , Coumarins/chemistry , Fluorescent Dyes/chemistry , Imidazoles/chemistry , Optical Imaging , Silver/analysis , Animals , Density Functional Theory , Fluorescent Dyes/chemical synthesis , HeLa Cells , Hep G2 Cells , Humans , Molecular Structure , Solubility , Spectrometry, Fluorescence , Tumor Cells, Cultured , Water/chemistry
17.
BMC Fam Pract ; 21(1): 80, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32375674

ABSTRACT

BACKGROUND: Studies on professional identity and related factors among Chinese general practitioners (GPs) are unavailable. The objective of this study was to investigate the professional identity level of GPs in China and explore factors associated with GPs' perceptions of their professional identity. METHODS: A multistage stratified random sampling method was used to collect data with a structured self-administered questionnaire from 3236 GPs working in community health service institutions (CHIs) in China between October, 2017 and February, 2018. Professional identity was measured by the 13 items scale. Descriptive statistics were calculated and groups' differences were estimated using nonparametric tests. Multiple linear stepwise regression analysis was used to analyze factors associated with professional identity among GPs. RESULTS: Based on a total score of 65 on the professional identity scale, the average score for GPs' professional identity was 51.23 (SD = 6.56). Multiple linear stepwise regression analysis showed that GPs who practiced in Central China, with an administrative responsibility, at a moderate or higher income level, who frequently worked overtime, had more occupational development opportunities, with a higher level of job satisfaction and older GPs had higher levels of professional identity. CONCLUSIONS: Professional identity level among GPs in China is high. Region, administrative responsibility, income level, working overtime, occupational development opportunities, age, and job satisfaction were significant predictors of professional identity.


Subject(s)
Attitude of Health Personnel , General Practitioners , Social Identification , China , Cross-Sectional Studies , Female , General Practitioners/statistics & numerical data , Humans , Income , Job Satisfaction , Linear Models , Male , Professional Role
18.
Ann Hematol ; 98(5): 1185-1195, 2019 May.
Article in English | MEDLINE | ID: mdl-30721336

ABSTRACT

The aim of our study was to evaluate the prognostic impact of minimal residual disease (MRD) and high-risk cytogenetics (HRCs) on outcomes in multiple myeloma (MM) patients. We applied multiparameter flow cytometry (MFC) to detect MRD in 123 consecutive patients diagnosed with MM for the first time who achieved very good partial remission (VGPR) or better after bortezomib or thalidomide-based induction therapy. Moreover, we examined the cytogenetic features of MM patients using magnetic-activated cell sorting and interphase fluorescence in situ hybridization (MACS-iFISH) at diagnosis. In all 123 MM patients, progression-free survival (PFS) and overall survival (OS) were better in the MRD- group (n = 31) than in the MRD+ group (n = 92) (median PFS: not reached (NR) vs. 26 months (m), P = 0.0002; 4-year OS, 91.7% vs. 66.3%, P = 0.008). PFS and OS were significantly shorter for each increase of one log per MRD level (P < 0.0001 and P = 0.001). The median PFS of the four groups according to the ratio of aberrant plasma cells (less than 0.01%, 0.01-0.1%, 0.1-1%, and more than 1%) were NR, 37 m, 26 m, and 15 m, respectively, and the 4-year OS rates were 91.7%, 69.3%, 76.1%, and 54.0%, respectively. In addition, our results show that PFS and OS were better for the standard-risk cytogenetic (SRC) patients than the HRC patients (median PFS: NR vs. 26 m, P = 0.004; 3-year OS: 95.8% vs. 76.0%, P = 0.006). The independent predictors of PFS were HRC and MRD+, which had hazard ratios of 1.901 (95% CI 1.094-3.303) and 3.486 (95% CI 1.449-8.386), respectively; while those for OS were an LDH level ≥ 250 U/L, HRC, and MRD+, which had hazard ratios of 2.789 (95% CI 1.080-7.199), 2.697 (95% CI 1.053-6.907), and 7.714 (95% CI 1.040-57.227), respectively. Furthermore, for SRC patients or HRC patients, PFS and OS were all longer in MRD- than in MRD+ patients. Strikingly, there was no significant difference in PFS or OS between the MRD-HRC and MRD+SRC groups (median PFS 45 vs. 34 m, P = 0.300; 4-year OS 100% vs. 83.6%, P = 0.196). PFS was superior in MRD-SRC than in MRD-HRC (NR vs. 45 m, P = 0.035); however, there was no significant difference in the 4-year OS between MRD-SRC and MRD-HRC (87.5% vs 100%, P = 0.480). MRD+ and HRCs were both independent prognostic factors in MM patients. Moreover, achieving MRD- may ameliorate a poor prognosis in MM patients with HRCs.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Chromosome Aberrations , Flow Cytometry , Multiple Myeloma , Adult , Aged , Aged, 80 and over , Disease-Free Survival , Female , Humans , Male , Middle Aged , Multiple Myeloma/blood , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Neoplasm, Residual , Risk Factors , Survival Rate
19.
PLoS Genet ; 12(9): e1006311, 2016 09.
Article in English | MEDLINE | ID: mdl-27618555

ABSTRACT

Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice.


Subject(s)
Adenosine Triphosphatases/biosynthesis , Immunity, Cellular/genetics , Multivesicular Bodies/genetics , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Adenosine Triphosphatases/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Death/genetics , Disease Resistance/genetics , Disease Resistance/immunology , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Endosomes/genetics , Endosomes/metabolism , Gene Expression Regulation, Plant , Multivesicular Bodies/immunology , Mutation , Oryza/genetics , Oryza/growth & development , Plant Diseases/genetics , Plant Diseases/immunology , Plant Leaves/genetics , Plant Leaves/immunology , Plants, Genetically Modified/immunology , Protein Transport/genetics , rab GTP-Binding Proteins/genetics
20.
New Phytol ; 220(1): 219-231, 2018 10.
Article in English | MEDLINE | ID: mdl-29949665

ABSTRACT

Xanthomonas oryzae pv. oryzae is the causative agent of rice bacterial leaf blight. While the type III secretion system of X. oryzae pv. oryzae is essential for virulence, the biochemical activities and virulence mechanisms of non-transcription activator-like (non-TAL) effectors delivered by this system are largely unknown. Here, by screening for non-TAL effectors that contribute to X. oryzae pv. oryzae virulence, we revealed that Xanthomonas outer protein K (XopK) inhibits pathogen-associated molecular pattern-triggered immunity upstream of mitogen-activated protein kinase cascades. Specifically, XopK interacted with and directly ubiquitinated rice somatic embryogenic receptor kinase 2 (OsSERK2), resulting in its degradation. Accordingly, mutation of a putative ubiquitin-conjugation enzyme (E2) binding site abolished XopK-induced degradation of OsSERK2 and compromised XopK-dependent virulence. As crucial immune regulators associated with a multitude of immune receptors, SERKs have been shown to be perturbed by Pseudomonas effectors via different mechanisms. Our study revealed a distinct perturbation mechanism of SERK activity via ubiquitination achieved by Xanthomonas non-TAL effector.


Subject(s)
Bacterial Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Xanthomonas/enzymology , Xanthomonas/pathogenicity , Arabidopsis/immunology , Arabidopsis/microbiology , Disease Resistance/immunology , MAP Kinase Signaling System , Mutation/genetics , Oryza/microbiology , Pathogen-Associated Molecular Pattern Molecules/metabolism , Plant Diseases/immunology , Plant Diseases/microbiology , Plant Immunity , Plant Proteins/metabolism , Protein Binding , Proteolysis , Protoplasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL