Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
J Am Chem Soc ; 146(7): 4993-5004, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38333965

ABSTRACT

Alkyne hydrogenation on palladium-based catalysts modified with silver is currently used in industry to eliminate trace amounts of alkynes in alkenes produced from steam cracking and alkane dehydrogenation processes. Intensive efforts have been devoted to designing an alternative catalyst for improvement, especially in terms of selectivity and catalyst cost, which is still far away from that as expected. Here, we describe an atomic design of a high-performance Ni-based intermetallic catalyst aided by active machine learning combined with density functional theory calculations. The engineered NiIn catalyst exhibits >97% selectivity to ethylene and propylene at the full conversion of acetylene and propyne at mild temperature, outperforming the reported Ni-based catalysts and even noble Pd-based ones. Detailed mechanistic studies using theoretical calculations and advanced characterizations elucidate that the atomic-level defined coordination environment of Ni sites and well-designed hybridization of Ni 3d with In 5p orbital determine the semihydrogenation pathway.

2.
Chem Soc Rev ; 52(12): 3991-4005, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37278085

ABSTRACT

Surface barriers to mass transfer in various nanoporous materials have been increasingly identified. These past few years especially, a significant impact on catalysis and separations has come to light. Broadly speaking, there are two types of barriers: internal barriers, which affect intraparticle diffusion, and external barriers, which determine the uptake and release rates of molecules into and out of the material. Here, we review the literature on surface barriers to mass transfer in nanoporous materials and describe how the existence and influence of surface barriers has been characterized, aided by molecular simulations and experimental measurements. As this is a complex, evolving research topic, without consensus from the scientific community at the time of writing, we present various current viewpoints, not always in agreement, on the origin, nature, and function of such barriers in catalysis and separation. We also emphasize the need for considering all the elementary steps of the mass transfer process in optimally designing new nanoporous and hierarchically structured adsorbents and catalysts.

3.
Angew Chem Int Ed Engl ; 63(1): e202314288, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37988201

ABSTRACT

Methanol serves as a versatile building-block for various commodity chemicals, and the development of industrially promising strategies for its conversion remains the ultimate goal in methanol chemistry. In this study, we design a dual Cu-Cs catalytic system that enables a one-step direct conversion of methanol and methyl acetate/ethanol into high value-added esters/aldehydes, with customized chain length and saturation by leveraging the proximity and distribution of Cu-Cs sites. Cu-Cs at a millimeter-scale intimacy triggers methanol dehydrogenation and condensation, involving proton transfer, aldol formation, and aldol condensation, to obtain unsaturated esters and aldehydes with selectivities of 76.3 % and 31.1 %, respectively. Cu-Cs at a micrometer-scale intimacy significantly promotes mass transfer of intermediates across catalyst interfaces and their subsequent hydrogenation to saturated esters and aldehydes with selectivities of 67.6 % and 93.1 %, respectively. Conversely, Cu-Cs at a nanometer-scale intimacy alters reaction pathway with a similar energy barrier for the rate-determining step, but blocks the acidic-basic sites and diverts the reaction to byproducts. More importantly, an unprecedented quadruple tandem catalytic production of methyl methacrylate (MMA) is achieved by further tailoring Cu and Cs distribution across the reaction bed in the configuration of Cu-Cs||Cs, outperforming the existing industrial processes and saving at least 15 % of production costs.

4.
Angew Chem Int Ed Engl ; : e202410979, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967363

ABSTRACT

Catalytic removal of alkynes is essential in industry for producing polymer-grade alkenes from steam cracking processes. Non-noble Ni-based catalysts hold promise as effective alternatives to industrial Pd-based catalysts but suffer from low activity. Here we report embedding of single-atom Pd onto the NiGa intermetallic surface with replacing Ga atoms via a well-defined synthesis strategy to design Pd1-NiGa catalyst for alkyne semi-hydrogenation. The fabricated Pd1Ni2Ga1 ensemble sites deliver remarkably higher specific mass activity under superb alkene selectivity of >96 % than the state-of-the-art catalysts under industry-relevant conditions. Integrated experimental and computational studies reveal that the single-atom Pd synergizes with the neighbouring Ni sites to facilitate the σ-adsorption of alkyne and dissociation of hydrogen while suppress the alkene adsorption. Such synergistic effects confer the single-atom Pd on the NiGa intermetallic with a Midas touch for alkyne semi-hydrogenation, providing an effective strategy for stimulating low active Ni-based catalysts for other selective hydrogenations in industry.

5.
Acc Chem Res ; 55(22): 3230-3241, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36321554

ABSTRACT

Heterogeneous catalysis is the workhorse of the chemical industry, and a heterogeneous catalyst possesses numerous active sites working together to drive the conversion of reactants to desirable products. Over the decades, much focus has been placed on identifying the factors affecting the active sites to gain deep insights into the structure-performance relationship, which in turn guides the design and preparation of more active, selective, and stable catalysts. However, the molecular-level interplay between active sites and catalytic function still remains qualitative or semiquantitative, ascribed to the difficulty and uncertainty in elucidating the nature of active sites for its controllable manipulation. Hence, bridging the microscopic properties of active sites and the macroscopic catalytic performance, that is, microscopic-to-macroscopic transition, to afford a quantitative description is intriguing yet challenging, and progress toward this promises to revolutionize catalyst design and preparation.In this Account, we propose mesokinetics modeling, for the first time enabling a quantitative description of active site characteristics and the related mechanistic information, as a versatile tool to guide rational catalyst design. Exemplified by a pseudo-zero-order reaction, the kinetics derivation from the Pt particle size-sensitive catalytic activity and size-insensitive activation energy suggests only one type of surface site as the dominant active site, in which the Pt(111) with almost unchanged turnover frequency (TOF111) is further identified as the dominating active site. Such a method has been extended to identify and quantify the number (Ni) of active sites for various thermo-, electro-, and photocatalysts in chemical synthesis, hydrogen generation, environment application, etc. Then, the kinetics derivation from the kinetic compensation effects suggests a thermodynamic balance between the activation entropy and enthalpy, which exhibit linear dependences on Pt charge. Accordingly, the Pt charge can serve as a catalytic descriptor for its quantitative determination of TOFi. This strategy has been further applied to Pt-catalyzed CO oxidation with nonzero-order reaction characteristic by taking the site coverages of surface species into consideration.Hence, substituting the above statistical correlations of Ni and TOFi into the rate equation R = ∑Ni × TOFi offers the mesokinetics model, which can precisely predict catalytic function and screen catalysts. Finally, based on the disentanglement of the factors underlying Pt electronic structures, a de novo strategy, from the interfacial charge distribution to reaction mechanism, kinetics, and thermodynamics parameters of the rate-determining step, and ultimately catalytic performance, is developed to map the unified mechanistic and kinetics picture of reaction. Overall, the mesokinetics not only demonstrates much potential to elucidate the quantitative interplay between active sites and catalytic activity but also provides a new research direction in kinetics analysis to rationalize catalyst design.


Subject(s)
Catalysis , Kinetics , Particle Size , Thermodynamics , Oxidation-Reduction
6.
Angew Chem Int Ed Engl ; 62(19): e202301024, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36912609

ABSTRACT

Polyethylene terephthalate (PET) hydrogenolysis can produce benzene, toluene, and xylene (BTX), where the selectivity control is challenging. We report a reaction pathway dictated by the Ru coordination environment by examining the binding geometries of adsorbates on differently coordinated Ru centers and their evolution during PET hydrogenolysis. A BTX yield of 77 % was obtained using a Ru/TiO2 with a Ru coordination number of ca. 5.0 where edge/corner sites are dominant, while more gas and saturated products were formed for Ru/TiO2 containing primarily terrace sites. Density functional theory and isotopic labelling revealed that under-coordinated Ru edge sites favor "upright" adsorption of aromatic adsorbates while well-coordinated Ru sites favor "flat-lying" adsorption, where the former mitigates ring hydrogenation and opening. This study demonstrates that reaction pathways can be directed through controlled reactant/intermediate binding via tuning of the Ru coordination environment for efficient conversion of PET to BTX.

7.
J Chem Phys ; 157(23): 234706, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36550054

ABSTRACT

The effect of gases on the surface composition of Cu-Pt bimetallic catalysts has been tested by in situ infrared (IR) and x-ray absorption spectroscopies. Diffusion of Pt atoms within the Cu-Pt nanoparticles was observed both in vacuum and under gaseous atmospheres. Vacuum IR spectra of CO adsorbed on CuPtx/SBA-15 catalysts (x = 0-∞) at 125 K showed no bonding on Pt regardless of Pt content, but reversible Pt segregation to the surface was seen with the high-Pt-content (x ≥ 0.2) samples upon heating to 225 K. In situ IR spectra in CO atmospheres also highlighted the reversible segregation of Pt to the surface and its diffusion back into the bulk when cycling the temperature from 295 to 495 K and back, most evidently for diluted single-atom alloy catalysts (x ≤ 0.01). Similar behavior was possibly observed under H2 using small amounts of CO as a probe molecule. In situ x-ray absorption near-edge structure data obtained for CuPt0.2/SBA-15 under both CO and He pointed to the metallic nature of the Pt atoms irrespective of gas or temperature, but analysis of the extended x-ray absorption fine structure identified a change in coordination environment around the Pt atoms, from a (Pt-Cu):(Pt-Pt) coordination number ratio of ∼6:6 at or below 445 K to 8:4 at 495 K. The main conclusion is that Cu-Pt bimetallic catalysts are dynamic, with the composition of their surfaces being dependent on temperature in gaseous environments.

8.
Angew Chem Int Ed Engl ; 61(16): e202200190, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35132761

ABSTRACT

Carbon monoxide (CO) is notorious for its strong adsorption to poison platinum group metal catalysts in the chemical industry. Here, we conceptually distinguish and quantify the effects of the occupancy and energy of d electrons, emerging as the two vital factors in d-band theory, for CO poisoning of Pt nanocatalysts. The stepwise defunctionalization of carbon support is adopted to fine-tune the 5d electronic structure of supported Pt nanoparticles. Excluding other promotional mechanisms, the increase of Pt 5d band energy strengthens the competitive adsorption of hydrogen against CO for the preferential oxidation of CO, affording the scaling relationship between Pt 5d band energy and CO/H2 adsorption energy difference. The decrease of Pt 5d band occupancy lowers CO site coverage to promote its association with oxygen for the total oxidation of CO, giving the scaling relationship between Pt 5d occupancy and activation energy. The above insights outline a molecular-level understanding of CO poisoning.

9.
Angew Chem Int Ed Engl ; 61(51): e202215225, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36269685

ABSTRACT

Precisely tailoring the distance between adjacent metal sites to match adsorption configurations of key species for the targeted reaction pathway is a great challenge in heterogeneous catalysis. Here, we report a proof-of-concept study on the atomically sites-tailored pathway in Pd-catalyzed acetylene hydrogenation, i.e., increasing the distance of adjacent Pd atoms (dPd-a-Pd ) for configuration matching in acetylene semi-hydrogenation against coupling. dPd-a-Pd is identified as a structural descriptor for describing the competitiveness for reaction pathways, and the increased dPd-a-Pd prefers the semi-hydrogenation pathway due to simultaneously promoted C2 H4 desorption and the destabilized transition state of the C2 H3 * coupling. Spectroscopic, kinetics and electronic structure studies reveal that increasing dPd-a-Pd to 3.31 Šdelivers superior selectivity and stability due to energy matching and appropriate hybridization of Pd 4d with In 2s and, especially, 2p orbitals.

10.
Angew Chem Int Ed Engl ; 60(26): 14394-14398, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33856709

ABSTRACT

We have developed a generalizable strategy to quantify the effect of surface barriers on zeolite catalysis. Isomerization of n-pentane, catalyzed by Pt/Beta, is taken as a model reaction system. Firstly, the surface modification by chemical liquid deposition of SiO2 was carried out to control the surface barriers on zeolite Beta crystals. The deposition of SiO2 leads to a very slight change in the physical properties of Beta crystals, but an obvious reduction in Brønsted acid sites. Diffusion measurements by the zero-length column (ZLC) method show that the apparent diffusivity of n-pentane can be more than doubled after SiO2 deposition, indicating that the surface barriers have been weakened. Catalytic performance was tested in a fixed-bed reactor, showing that the apparent catalytic activity improved by 51-131 % after SiO2 deposition. These results provide direct proof that reducing surface barriers can be an effective route to improve zeolite catalyst performance deteriorated by transport limitations.

11.
Angew Chem Int Ed Engl ; 59(4): 1548-1551, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-31750968

ABSTRACT

Applications of zeolites in catalysis are plagued by strong diffusion resistance, which results from limitations to molecular transport in micropores, across external crystal surfaces, but also across internal interfaces. The first type of diffusion resistance is well understood, the second is receiving increasing attention, while the diffusion barriers at internal interfaces remain largely unclear. We take Pt/Beta catalyzed isomerization of n-heptane as the model system to explore the role of internal diffusion barriers in zeolite catalysis. The two as-synthesized Pt/Beta catalysts have an identical Pt loading, similar Beta particle size and acidity, but different internal structures. A Pt/Beta crystal with no observable internal interfaces can be 180 % higher in activity and 22 % higher in selectivity than its counterpart with numerous internal interfaces. This can only be attributed to the strong transport barriers across internal interfaces, as supported by directly comparing the apparent diffusivities of the two Beta samples.

12.
Angew Chem Int Ed Engl ; 59(28): 11647-11652, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32282112

ABSTRACT

Atomic regulation of metal catalysts has emerged as an intriguing yet challenging strategy to boost product selectivity. Here, we report a density functional theory-guided atomic design strategy for the fabrication of a NiGa intermetallic catalyst with completely isolated Ni sites to optimize acetylene semi-hydrogenation processes. Such Ni sites show not only preferential acetylene π-adsorption, but also enhanced ethylene desorption. The characteristics of the Ni sites are confirmed by multiple characterization techniques, including aberration-corrected high-resolution scanning transmission electron microscopy and X-ray absorption spectrometry measurements. The superior performance is also confirmed experimentally against a Ni5 Ga3 intermetallic catalyst with partially isolated Ni sites and against a Ni catalyst with multi-atomic ensemble Ni sites. Accordingly, the NiGa intermetallic catalyst with the completely isolated Ni sites shows significantly enhanced selectivity to ethylene and suppressed coke formation.

13.
Langmuir ; 35(30): 9962-9969, 2019 Jul 30.
Article in English | MEDLINE | ID: mdl-31141371

ABSTRACT

Hydrogen transport on transition-metal oxides is a shared process in many important physical and chemical changes of interest. In this work, DFT + U calculations have been carried out to explore the mechanism for hydrogen migration on the defect-free and oxygen-deficient LaMO3(001) (M = Cr, Mn, and Fe) surfaces. The calculated results indicate that hydrogen is preferentially adsorbed at the oxygen sites on all surfaces other than the defective LaCrO3(001), where the occupation of vacancies is energetically most favorable. The resultant O-H bonds would be weakened when oxygen vacancies are formed in their immediate vicinity because the increased electron density on the remaining ions would limit the ability of O to withdraw electrons from H. On defect-free LaMO3(001), hydrogen prefers to migrate along the [010] axis, during which the O-H bond is reoriented at the oxygen site for the hopping to proceed by the Grotthuss mechanism. In the presence of oxygen vacancies, the vehicle mechanism in which hydrogen hops together with the underlying oxygen would dominate on LaMnO3 and LaFeO3, whereas on the defective LaCrO3(001) the Grotthuss mechanism prevails. The linear scaling relations established show that the hydrogen and hydroxyl migration barriers decrease and increase, respectively, with increasing the strength of ionic bonding in perovskites, which provides a rational interpretation of the change in the preferred hydrogen migration mechanism.

14.
Phys Chem Chem Phys ; 21(24): 12859-12871, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31184338

ABSTRACT

The exposed termination of transition-metal oxide surfaces plays a major role in determining the catalyst performance in redox reactions. In this contribution, the surface phase diagrams of LaMO3(001) (M = Sc-Fe) and LaMO3(110) (M = Co-Cu) are constructed by using the DFT+U method. The stabilities of six terminations derived from the stoichiometric MO2 and LaO surfaces are determined over a wide range of temperatures and oxygen partial pressures. The surface phase diagrams are calculated towards the O-rich limit in which the chemical potential of oxygen anions of perovskites equals that of gas-phase oxygen while the chemical potential of M cations is limited by thermodynamic boundary conditions. It is found that the surface phase diagrams are closely related to the reducibility of M cations, which is reflected in the oxygen adsorption energy and oxygen vacancy formation energy on the MO2- and LaO-terminated surfaces and can be measured by the third ionization energies of the M2+ cations. According to the surface phase diagrams, the most stable surface termination is predicted to be of MO2 type for LaMO3 (M = Sc-Fe) and LaO type for LaMO3 (M = Co-Cu) under solid oxide fuel cell operating conditions. Because the M cations become more readily reduced on going from left to right across the period, LaCoO3 may form an oxygen-deficient crystal structure at high temperatures and LaNiO3 and LaCuO3 would be decomposed into oxides containing the transition metals in a lower oxidation state.

15.
Angew Chem Int Ed Engl ; 57(31): 9770-9774, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-29877020

ABSTRACT

A strategy is presented for making metal clusters encapsulated inside microporous solids selectively accessible to reactant molecules by manipulating molecular sieve size and affinity for adsorbed molecules. This expands the catalytic capabilities of these materials to reactions demanding high selectivity and stability. Selective hydrogen combustion was achieved over Pt clusters encapsulated in LTA zeolite (KA, NaA, CaA) in a propene-rich mixture obtained from propane dehydrogenation, showing pore-size dependent selectivity and coking rate. Propene tended to adsorb at channels or external surfaces of zeolite, interfering the diffusion of hydrogen and oxygen. Tailoring the surface of LTA zeolite with additional alkali or alkaline earth oxides contributed to narrowing zeolite pore size and their affinity for propene. The thus-modified Pt@KA catalyst displayed excellent hydrogen combustion selectivity (98.5 %) with high activity and superior anti-coking and anti-sintering properties.

16.
Phys Chem Chem Phys ; 19(22): 14555-14565, 2017 Jun 07.
Article in English | MEDLINE | ID: mdl-28537306

ABSTRACT

Conical carbon nanofibers (CNFs) exist primarily as graphitic ribbons that fold into a cylindrical structure with the formation of a hollow core. Structural analysis aided by molecular modeling proves useful for obtaining a full picture of how the size of the central channel varies from fiber to fiber. From a geometrical perspective, conical CNFs possibly have cone tips that are nearly closed. On the other hand, their fiber wall thickness can be reduced to a minimum possible value that is determined solely by the apex angle, regardless of the outer diameter. A formula has been developed to express the number of carbon atoms present in conical CNFs in terms of measurable structural parameters. It appears that the energetically preferred fiber wall thickness increases not only with the apex angle, but also with the number of atoms in the constituent graphitic cones. The origin of the empirical observation that conical CNFs with small apex angles tend to have a large hollow core lies in the fact that in graphene sheets that are more highly curved the curvature-induced strain energy rises more rapidly as the fiber wall thickens.

17.
J Am Chem Soc ; 137(12): 4223-9, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25759959

ABSTRACT

Oxygen evolution from water poses a significant challenge in solar fuel production because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen evolution reaction (OER). Here, a new strategy was developed to synthesize nonsupported ultrasmall cobalt oxide nanocubanes through an in situ phase transformation mechanism using a layered Co(OH)(OCH3) precursor. Under sonication, the precursor was exfoliated and transformed into cobalt oxide nanocubanes in the presence of NaHCO3-Na2SiF6 buffer solution. The resulting cobalt catalyst with an average particle size less than 2 nm exhibited a turnover frequency of 0.023 per second per cobalt in photocatalytic water oxidation. X-ray absorption results suggested a unique nanocubane structure, where 13 cobalt atoms fully coordinated with oxygen in an octahedral arrangement to form 8 Co4O4 cubanes, which may be responsible for the exceptionally high OER activity.


Subject(s)
Cobalt/chemistry , Nanostructures/chemistry , Oxides/chemistry , Oxygen/chemistry , Water/chemistry , Catalysis , Nanostructures/ultrastructure , Nanotechnology , Oxidation-Reduction , Particle Size
18.
J Am Chem Soc ; 136(48): 16736-9, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25405630

ABSTRACT

We report a size-dependent activity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane. Kinetic study and model calculations revealed that Pt(111) facet is the dominating catalytically active surface. There is an optimized Pt particle size of ca. 1.8 nm. Meanwhile, the catalyst durability was found to be highly sensitive to the Pt particle size. The smaller Pt particles appear to have lower durability, which could be related to more significant adsorption of B-containing species on Pt surfaces as well as easier changes in Pt particle size and shape. The insights reported here may pave the way for the rational design of highly active and durable Pt catalysts for hydrogen generation.

19.
Chemistry ; 20(45): 14744-55, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25233842

ABSTRACT

The crystallization of zeolite beta in a dry gel system is found to follow the orientated attachment growth route, escorted with a temporal morphology change from bulky gel, through aggregation of the particulate to large zeolitic crystals. Modification of the precrystallized gel with organosilanes can be used to tune the morphology of the ultimate beta. When hexadecyltrimethoxysilane (HTS) is employed to modify precrystallized gel, a resumed secondary growth produces a hybrid mesocrystal of agglomerated nanozeolites. Combustive removal of organics leads to the formation of hierarchically porous zeolite beta of 100 to 160 nm, composed of nanocrystal building units ranging from 20 to 40 nm, with a noticeable micropore volume of 0.19 mL g(-1) and a meso/macropore size between 5 and 80 nm. Conversely, when 1,8-bis(triethoxysilyl)octane (BTO) is utilized to modify the same precrystallized gel, assemblages of discrete beta nanozeolite of around 35 nm are generated. These assemblages construct a hierarchical zeolite beta with a micropore volume of 0.20 mL g(-1) and auxiliary pores ranging from 5 to 100 nm. Both organosilanes bring about well-connected hierarchical pore networks. HTS has little effect on the Brønsted/Lewis acidity, whereas BTO causes a substantial reduction of strong Brønsted acid sites. The hierarchical beta zeolite-supported Pt catalyst exhibits improved catalytic performance for the hydroisomerization of n-heptane.

20.
Natl Sci Rev ; 11(8): nwae243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39171274

ABSTRACT

Plastics, fibers and rubber are three mainstream synthetic materials that are essential to our daily lives and contribute significantly to the quality of our lives. The production of the monomers of these synthetic polymers usually involves oxidation or ammoximation reactions of olefins and analogues. However, the utilization of C, O and N atoms in current industrial processes is <80%, which represents the most environmentally polluting processes for the production of basic chemicals. Through innovation and integration of catalytic materials, new reaction pathways, and reaction engineering, the Research Institute of Petroleum Processing, Sinopec Co., Ltd. (RIPP) and its collaborators have developed unique H2O2-centered oxidation/ammoximation technologies for olefins and analogues, which has resulted in a ¥500 billion emerging industry and driven trillions of ¥s' worth of downstream industries. The chemical and engineering bases of the production technologies mainly involve the integration of slurry-bed reactors and microsphere catalysts to enhance H2O2 production, H2O2 propylene/chloropropylene epoxidation for the production of propylene oxide/epichlorohydrin, and integration of H2O2 cyclohexanone ammoximation and membrane separation to innovate the caprolactam production process. This review briefly summarizes the whole process from the acquisition of scientific knowledge to the formation of an industrial production technology by RIPP. Moreover, the scientific frontiers of H2O2 production and related oxidation/ammoximation processes of olefins and analogues are reviewed, and new technological growth points are envisaged, with the aim of maintaining China's standing as a leader in the development of the science and technologies of H2O2 production and utilization.

SELECTION OF CITATIONS
SEARCH DETAIL