Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181741

ABSTRACT

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Subject(s)
Lung Neoplasms , Proteogenomics , Small Cell Lung Carcinoma , Humans , Cell Line , Lung Neoplasms/chemistry , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/chemistry , Small Cell Lung Carcinoma/genetics , Heterografts , Biomarkers, Tumor/analysis
2.
Cell ; 179(2): 561-577.e22, 2019 10 03.
Article in English | MEDLINE | ID: mdl-31585088

ABSTRACT

We performed the first proteogenomic characterization of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) using paired tumor and adjacent liver tissues from 159 patients. Integrated proteogenomic analyses revealed consistency and discordance among multi-omics, activation status of key signaling pathways, and liver-specific metabolic reprogramming in HBV-related HCC. Proteomic profiling identified three subgroups associated with clinical and molecular attributes including patient survival, tumor thrombus, genetic profile, and the liver-specific proteome. These proteomic subgroups have distinct features in metabolic reprogramming, microenvironment dysregulation, cell proliferation, and potential therapeutics. Two prognostic biomarkers, PYCR2 and ADH1A, related to proteomic subgrouping and involved in HCC metabolic reprogramming, were identified. CTNNB1 and TP53 mutation-associated signaling and metabolic profiles were revealed, among which mutated CTNNB1-associated ALDOA phosphorylation was validated to promote glycolysis and cell proliferation. Our study provides a valuable resource that significantly expands the knowledge of HBV-related HCC and may eventually benefit clinical practice.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Fructose-Bisphosphate Aldolase/genetics , Hepatitis B virus , Hepatitis B, Chronic/complications , Liver Neoplasms/genetics , Liver Neoplasms/virology , Proteogenomics/methods , beta Catenin/genetics , Animals , Cell Proliferation , Cohort Studies , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Middle Aged , Tumor Microenvironment/genetics
4.
Opt Express ; 32(5): 8081-8091, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439474

ABSTRACT

A digital pre-distortion (DPD) scheme based on an adaptive-memory-length look-up table (AML-LUT) is proposed and experimentally demonstrated in a four-level pulse amplitude modulation (4-PAM) underwater optical wireless communication (UOWC) system. By implementing adaptive memory length for each pattern in the AML-LUT-based DPD, the size of the AML-LUT can be significantly reduced without sacrificing performance compared to both the full-size LUT and the multi-symbol simplified look-up table (MSS-LUT)-based DPDs. The performance of the proposed AML-LUT-based DPD is experimentally evaluated for a 625 Mbit/s 4-PAM UOWC over 1 m transmission length. Experimental results show that compared with the full-size LUT with a memory length of 7 (LUT-7)-based DPD, the proposed AML-LUT-based DPD (i) incurs a marginal power penalty of 0.5 dB at both the 7% hard-decision forward error correction (HD-FEC) and KP4-FEC threshold limits, while simultaneously reducing the implementation complexity (i.e., the LUT size) by 93%; (ii) achieves comparable transmission performance compared to the MSS-LUT-based DPD, while reducing the implementation complexity by 89%; and (iii) shows great potential for high-speed, low-complexity and memory-efficient intensity modulation and direct detection (IM/DD) UOWC and short-reach optical interconnects.

5.
Bioorg Chem ; 146: 107279, 2024 May.
Article in English | MEDLINE | ID: mdl-38513325

ABSTRACT

Targeting receptor-interacting protein kinase 1 (RIPK1) has emerged as a promising therapeutic strategy for various neurodegenerative disorders. The development of a positron emission tomography (PET) probe for brain RIPK1 imaging could offer a valuable tool to assess therapeutic effectiveness and uncover the neuropathology associated with RIPK1. In this study, we present the development and characterization of two new PET radioligands, [11C]PB218 and [11C]PB220, which have the potential to facilitate brain RIPK1 imaging. [11C]PB218 and [11C]PB220 were successfully synthesized with a high radiochemical yield (34 % - 42 %) and molar activity (293 - 314 GBq/µmol). PET imaging characterization of two radioligands was conducted in rodents, demonstrating that both newly developed tracers have good brain penetration (maximum SUV = 0.9 - 1.0) and appropriate brain clearance kinetic profiles. Notably, [11C]PB218 has a more favorable binding specificity than [11C]PB220. A PET/MR study of [11C]PB218 in a non-human primate exhibited good brain penetration, desirable kinetic properties, and a safe profile, thus supporting the translational applicability of our new probe. These investigations enable further translational exploration of [11C]PB218 for drug discovery and PET probe development targeting RIPK1.


Subject(s)
Brain , Positron-Emission Tomography , Animals , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Radiopharmaceuticals/chemistry , Radiochemistry , Pyridines/metabolism
6.
Molecules ; 29(6)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38542884

ABSTRACT

Cell-penetrating peptides (CPPs) are invaluable tools for delivering various substances into cells by crossing biological membranes. However, the effects of cell-penetrating peptide fusion proteins on the biological activity of antibodies remain to be fully understood. Here, we engineered a recombinant protein, LP-scFv, which combines the single-chain variable region of anti-human epidermal growth factor receptor-2 with a novel and non-oxic cell-penetrating peptide as a leader peptide. The introduction of this leader peptide led to a more than twofold increase in the internalization efficiency of the single-chain antibody, as confirmed using microscopic analysis and flow cytometry. The effects of the single-chain antibodies and LP-scFv on cell viability were evaluated using the MTT assay. Both the single-chain antibodies and LP-scFv reduced the viability of BT474 and NCI-N87 cells in a dose-dependent manner while exhibiting minimal toxicity towards MCF-7 and MCF-10A cells. Further investigation into LP-scFv's mechanism revealed that the induced leader peptide does not alter the MAPK-ERK1/2 and PI3K/AKT pathways of single-chain antibodies. An enhanced antitumor activity was also confirmed in an NCI-N87 tumor xenograft model in mice with a reduction of 45.2% in tumor growth inhibition (vs. 23.1% for scFv) with a 50 mg/kg dose after orthotopic injection administration, which was equivalent to that of trastuzumab (vs. 55.7% for trastuzumab). Overall, these results indicate that LP-scFv exhibits significant permeation activity in HER2-positive cells to enhance the intracellular dose effect on antitumor activity in vitro and in vivo. This research lays the foundation for designing novel antibody-based therapies for cancer.


Subject(s)
Breast Neoplasms , Cell-Penetrating Peptides , Single-Chain Antibodies , Humans , Animals , Mice , Female , Breast Neoplasms/pathology , Single-Chain Antibodies/pharmacology , Cell-Penetrating Peptides/pharmacology , Cell-Penetrating Peptides/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Trastuzumab/therapeutic use , Receptor, ErbB-2/metabolism , Protein Sorting Signals , Xenograft Model Antitumor Assays
7.
Angew Chem Int Ed Engl ; 63(34): e202404629, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38845560

ABSTRACT

Owing to the significant attention directed toward alloy metal nanoclusters, it is crucial to explore the relationship between their structures and their performance during the electrocatalytic CO2 reduction reaction (eCO2RR) and discover potential synergistic effects for the design of novel functional nanoclusters. However, a lack of suitable analogs makes this investigation challenging. In this study, we synthesized a well-defined pair of structural analogs, [Au8Cu1(SAdm)4(Dppm)3Cl]2+ and [Au8Ag1(SAdm)4(Dppm)3Cl]2+ (Au8Cu1 and Au8Ag1, respectively), and characterized them. Single-crystal X-ray diffraction analysis revealed that Au8M1 (M=Cu/Ag) consists of a tetrahedral Au3M1 core capped by three (Dppm)Au staples, one Au2(SR)3 staple, one lone SR ligand, and a terminal Cl ligand. Ag and Cu were doped at the same site in the Au8M1 nanoclusters, which has rarely been reported. Au8Cu1 exhibited a significantly higher CO Faradaic efficiency (FECO; ~82.2 %) during eCO2RR than that of Au8Ag1 (FECO; ~33.1 %). Density functional theory calculations demonstrated that *COOH is the key intermediate in the reduction of CO2 to CO. The formation of *COOH on Au8Cu1 is more thermodynamically stable than on Au8Ag1, and Au8Cu1 shows a smaller *CO formation energy than that on Au8Ag1, which promotes the reduction of CO2. We believe that the structural analogs Au8Cu1 and Au8Ag1 offer a suitable template for the in-depth investigation of structure-property correlations at the atomic level.

8.
Small ; 19(36): e2301357, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127865

ABSTRACT

The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.

9.
Opt Express ; 31(14): 23086-23094, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475401

ABSTRACT

A low-complexity 3rd-order frequency-domain nonlinear equalizer (FD-NLE) with absolute operation is proposed and experimentally demonstrated for underwater wireless optical communications (UWOC). In the proposed FD-NLE scheme, absolute operation and fast Fourier transform (FFT) with multiplication operations are utilized instead of the square and convolution operations used in conventional polynomial nonlinear equalizers (PNLEs), respectively. Therefore, complexity reductions by over 77.3% and 66.9% can be achieved compared with those of PNLE and PNLE with absolute operation, respectively, with a memory length larger than 8. A UWOC system using orthogonal frequency division multiplexing (OFDM) signals with adaptive bit and power loading is also demonstrated to evaluate the performance of the proposed scheme. Experimental results show that data rate increments by ∼ 5.6% and ∼ 5.7% at BER below 7% hard-decision forward error correction (HD-FEC) limit of 3.8 × 10-3, compared with PNLE and PNLE with absolute operation, respectively, are realized using the proposed scheme. Meanwhile, the proposed scheme has an up to 14.7% complexity reduction compared with conventional frequency-domain PNLE (FD-PNLE), while maintaining similar equalization performance.

10.
Cancer Sci ; 113(7): 2457-2471, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35441763

ABSTRACT

Our previous works have indicated that extracellular ATP is an important prometastasis factor. However, the molecular mechanism involved needs to be further studied. We demonstrated that extracellular ATP treatment could upregulate the expression of connective tissue growth factor (CTGF) in both triple-negative breast cancer (TNBC) cells and endothelial cells (ECs). Extracellular ATP stimulated the migration of TNBC cells and ECs, and angiogenesis of ECs via the P2Y2--YAP-CTGF axis. Furthermore, we demonstrated that adenosine triphosphate (ATP) stimulated TNBC cell adhesion to ECs and transmigration through the EC layer via CTGF by upregulation of integrin ß1 on TNBC cells and VCAM-1 on ECs. Both apyrase (ATP-diphosphohydrolase) and CTGF shRNA treatments could inhibit the metastasis of inoculated tumors to lung and liver in a mouse model, and these treated tumors had fewer blood vessels. Collectively, our data indicated that extracellular ATP promotes tumor angiogenesis and the interactions between TNBC cells and ECs through upregulation of CTGF, thereby stimulating TNBC metastasis. The pleiotropic effects of ATP in angiogenesis and cell adhesion suggest that extracellular ATP or CTGF could be an effective target for TNBC therapy.


Subject(s)
Adenosine Triphosphate , Connective Tissue Growth Factor , Triple Negative Breast Neoplasms , Adenosine Triphosphate/metabolism , Animals , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Endothelial Cells/metabolism , Humans , Mice , Neovascularization, Pathologic/metabolism , Triple Negative Breast Neoplasms/metabolism , Up-Regulation
11.
Breast Cancer Res Treat ; 184(1): 237-248, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32757134

ABSTRACT

PURPOSE: This study aimed to investigate whether genetic polymorphisms in TGFB1 contribute to breast cancer (BC) susceptibility, and explore the mechanism of action. METHODS: A total of 7 tagging SNPs (tSNPs) were genotyped in 1161 BC cases and 1337 age-matched controls among Chinese Han population. Bioinformatics analysis was used to predict functional SNP closely linked to tSNPs. Luciferase gene reporter assay was performed to determine the effect of genetic variants on promoter activity. DNA pull-down assay and mass spectrometry were used to identify the differentially binding proteins to genetic variants. RESULTS: Genotyping analysis showed that rs1800469 (C>T) in the 5' regulatory region of TGFB1 was associated with reduced BC risk. Bioinformatics analysis predicted that rs11466313 (-2389_-2391 Del/AGG) in the 5' regulatory region of TGFB1, was closely linked to tSNP rs1800469 and could be functional. The genotyping of rs11466313 by PCR-SSCP showed that rs11466313 also conferred decreased BC risk. Luciferase assays demonstrated that rs11466313 minor allele reduced over ninefold of promoter activity compared with its major allele (p < 0.001). DNA pull-down assay and mass spectrometry revealed that rs11466313 minor allele lost the binding ability with FAM98B and HSP90B. Knocking down FAM98B but not HSP90B, the enhanced promoter activity driven by TGFB1 rs11466313 major allele was attenuated. CONCLUSIONS: This study elucidates the impact of functional polymorphism rs11466313 in the regulatory region of TGFB1 on breast cancer susceptibility and gene expression, and could be helpful for future research to determine the value of this TGFB1 variant in the clinical setting.


Subject(s)
Breast Neoplasms , Alleles , Breast Neoplasms/genetics , Case-Control Studies , Female , Genetic Predisposition to Disease , Haplotypes , Humans , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Transforming Growth Factor beta1/genetics
12.
BMC Public Health ; 20(1): 874, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32503499

ABSTRACT

BACKGROUND: Manganese (Mn) participates in lipid metabolism. However, the associations between Mn exposure and dyslipidaemia is unclear. METHODS: This was a cross-sectional study. Data were collected from the 2017 the Mn-exposed workers healthy cohort (MEWHC). Finally, 803 occupationally Mn-exposed workers included in the study. The workers were divided into two groups. The grouping of this study was based on Mn-Time Weighted Averages (Mn-TWA). The high-exposure group included participants with Mn-TWA greater than 0.15 mg/m3. The low-exposure group included participants with Mn-TWA less than or equal to 0.15 mg/m3. Mn-TWA levels and dyslipidaemia were assessed. RESULTS: After adjustment for seniority, sex, cigarette consumption, alcohol consumption, high-fat diet frequency, medicine intake in the past two weeks, egg intake frequency, drinking tea, WHR, and hypertension, Mn-TWA levels was negatively correlated with high triglycerides (TG) risk in workers overall (OR = 0.51; 95% CI: 0.36, 0.73; p <  0.01). The results of males and females were consistent (OR = 0.53; 95% CI: 0.34, 0.81; p <  0.01) and (OR = 0.47; 95% CI: 0.24, 0.94; p <  0.01), respectively. By performing interactions analyses of workers overall, we observed no significant interactions among confounders. Mn-TWA levels and pack-years on high TG risk (relative excess risk for the interactions (RERI = 2.29, 95% CI: - 2.07, 6.66), (RERI) = 2.98, 95% CI: - 2.30, 8.26). Similarly, smoking status, drinking status, high-fat diet frequency, and Waist-to-Hip Ratio (WHR) showed non-significant interactions with Mn-TWA levels on high TG risk. CONCLUSIONS: This research indicates that high Mn exposure was negatively related to high TG risk in workers.


Subject(s)
Hypertriglyceridemia/etiology , Manganese/analysis , Occupational Diseases/etiology , Occupational Exposure/analysis , Adult , Cross-Sectional Studies , Female , Humans , Hypertriglyceridemia/epidemiology , Male , Middle Aged , Occupational Diseases/epidemiology , Triglycerides/blood
13.
Am J Ind Med ; 63(5): 394-401, 2020 05.
Article in English | MEDLINE | ID: mdl-32112445

ABSTRACT

BACKGROUND: Elevated exposure to manganese (Mn) could induce cardiovascular dysfunction. However, limited research is available on the effects of occupational Mn exposure on myocardial enzymes. We aimed to evaluate the relationships between Mn exposure and myocardial enzyme elevation among Mn-exposed workers. METHODS: Data were from a follow-up investigation of a Mn-exposed workers healthy cohort in 2017. A total of 744 workers were divided into low-exposure and high-exposure groups according to Mn time-weighted average (Mn-TWA) of less than or equal to 0.15 mg/m3 or greater than 0.15 mg/m3 , respectively. Serum levels of myocardial enzymes, including creatine kinase (CK) and creatine kinase-MB (CK-MB), lactic dehydrogenase, α-hydroxybutyrate dehydrogenase, and aspartate transaminase, were assessed, as well as airborne Mn exposure levels. RESULTS: After adjustment for sex, body mass index, seniority, education, current smoking status, current drinking status, and hypertension, Mn-TWA levels were positively associated with the risk of CK elevation (odds ratio [OR] = 1.47 (95% confidence interval [CI]: 1.18-1.83) per interquartile range [IQR] increase), and risk of CK-MB elevation [OR = 1.57 (95% CI: 1.03-2.38) per IQR increase]. In a stratified analysis, Mn-TWA levels were positively correlated with CK elevation in workers of seniority greater than 19 years, male workers, current smokers, and drinkers. CONCLUSION: Our results suggest that occupational exposure to Mn is associated with increased risk of CK and CK-MB elevation. The potential mechanisms of the associations between airborne exposure to Mn and increased risk of these myocardial enzyme elevations warrant further investigation.


Subject(s)
Air Pollutants, Occupational/adverse effects , Creatine Kinase, MB Form/blood , Creatine Kinase/blood , Manganese/adverse effects , Metallurgy , Occupational Exposure/adverse effects , Adult , Air Pollutants, Occupational/analysis , Biomarkers/blood , Female , Follow-Up Studies , Humans , Iron , Male , Manganese/analysis , Middle Aged , Occupational Exposure/analysis , Odds Ratio , Risk Factors
14.
J Proteome Res ; 18(6): 2654-2665, 2019 06 07.
Article in English | MEDLINE | ID: mdl-31059266

ABSTRACT

The deubiquitinase USP9X is involved in multiple diseases including neurodegeneration, epilepsy, and various types of tumors by targeting different substrates. In the present study, we aimed to explore the potential substrates of USP9X and performed SILAC-based quantitative proteomics to compare these substrates in USP9X-knockdown and wild-type HeLa cells. We consequently carried out Flag-NFX1-123 tag affinity-based mass spectrometry and confirmed that the X-box binding nuclear factor NFX1-123 interacted with USP9X. Moreover, immunoprecipitation assays verified a direct interaction between USP9X and NFX1-123. Further experiments confirmed that NFX1-123 could be modified by ubiquitination and that USP9X stabilized NFX1-123 via efficient deubiquitination of NFX1-123. Knockdown of USP9X resulted in decreased NFX1-123 protein levels compared with their unchanged corresponding mRNA levels in different cell lines. In summary, we found that NFX1-123 was a bona fide substrate of the deubiquitinase USP9X and that it could be degraded by the ubiquitin-proteasome system. The present study provided new insight into understanding the biological function of USP9X by targeting its substrate NFX1-123.


Subject(s)
Nerve Degeneration/genetics , Proteomics , Repressor Proteins/genetics , Ubiquitin Thiolesterase/genetics , Apoptosis/genetics , Cell Proliferation/genetics , Gene Expression Regulation/genetics , Gene Knockdown Techniques , HeLa Cells , Humans , Nerve Degeneration/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/genetics , Ubiquitination/genetics
15.
J Cell Biochem ; 120(4): 6570-6579, 2019 04.
Article in English | MEDLINE | ID: mdl-30320938

ABSTRACT

Stress-induced immunosuppression is one of the serious threats to the poultry industry, especially obvious for young chicken. However, the molecular mechanism of stress-induced immunosuppression has not been clear in chicken. Here, we established an immunosuppression model of 7-day-old chickens with injecting dexamethasone (Dex) to analyze the molecular regulation in the chicken thymus. The microRNAs (miRNAs) transcripts profiles of thymuses from the model and control group were identified by the Solexa sequencing technology. The results showed 121 significantly differently expressed (SDE) miRNAs, including 119 known and two novel miRNAs (novel-58 and novel-350). A total of 391 target genes of the SDE miRNAs were predicted and annotated. We verified the potential negative correlation between gga-miR-103-3p and TGM2 by quantitative real-time polymerase chain reaction (qRT-PCR), as well as between novel-350 and PCBD2, and the results were positive. Gene ontology (GO) enrichment analysis showed that there was 298 significant enrichment GO terms, in which 31 were related to immune or stress, such as lymphocyte apoptotic process and response to stress. KEGG pathway analysis suggested that the SDE miRNAs were involved in autophagy regulation, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway, Jak-STAT signaling pathway, and so on (although not significantly enriched). In these immune signaling pathways, the SDE miRNAs (such as gga-miR-2954, gga-miR-146b-3p, gga-miR-106-3p, and gga-miR-214) and the predicted target genes (such as IL11Ra, CSF3R, IFNGR1, CNTF, and MAP2K2) might affect the thymus immune function of chicken. The above results would provide a basis for uncovering the molecular regulation mechanism of immunosuppression in poultry.


Subject(s)
Biomarkers/analysis , Dexamethasone/pharmacology , Gene Expression Regulation/drug effects , MicroRNAs/genetics , Thymus Gland/metabolism , Transcriptome/genetics , Animals , Anti-Inflammatory Agents/pharmacology , Chickens , Gene Expression Profiling , Immunosuppression Therapy , Thymus Gland/cytology , Thymus Gland/drug effects , Thymus Gland/immunology , Transcriptome/drug effects
16.
Cancer Sci ; 110(8): 2456-2470, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31148343

ABSTRACT

Extracellular ATP has been shown to play an important role in invasion and the epithelial-mesenchymal transition (EMT) process in breast cancer; however, the mechanism is unclear. Here, by using a cDNA microarray, we demonstrated that extracellular ATP could stimulate hypoxia-inducible factor (HIF) signaling and upregulate hypoxia-inducible factor 1/2α (HIF-1/2α) expression. After knocking down HIF-1/2α using siRNA, we found that ATP-driven invasion and EMT were significantly attenuated via HIF2A-siRNA in breast cancer cells. By using ChIP assays, we revealed that the biological function of extracellular ATP in invasion and EMT process depended on HIF-2α direct targets, among which lysyl oxidase-like 2 (LOXL2) and matrix metalloproteinase-9 (MMP-9) mediated ATP-driven invasion, and E-cadherin and Snail mediated ATP-driven EMT, respectively. In addition, using silver staining and mass spectrometry, we found that phosphoglycerate kinase 1 (PGK1) could interact with HIF-2α and mediate ATP-driven HIF-2α upregulation. Furthermore, we demonstrated that expressions of HIF-2α and its target proteins could be regulated via ATP by AKT-PGK1 pathway. Using a Balb/c mice model, we illustrated the function of HIF-2α in promoting tumor growth and metastasis in vivo. Moreover, by exploring online databases, we found that molecules involved in ATP-HIF-2α signaling were highly expressed in human breast carcinoma tissues and were associated with poor prognosis. Altogether, these findings suggest that extracellular ATP could promote breast carcinoma invasion and EMT via HIF-2α signaling, which may be a potential target for future anti-metastasis therapy.


Subject(s)
Adenosine Triphosphate/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Epithelial-Mesenchymal Transition/physiology , Hypoxia/pathology , Neoplasm Invasiveness/pathology , Amino Acid Oxidoreductases/metabolism , Animals , Cell Line, Tumor , Cell Movement/physiology , Female , Gene Expression Regulation, Neoplastic/physiology , Humans , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/physiology , Up-Regulation/physiology
17.
Biochem Biophys Res Commun ; 516(1): 320-326, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31256935

ABSTRACT

Kappa-opioid receptor (KOR) is a member of G-protein coupled receptors (GPCRs) expressed in serotonergic neurons and neuronal terminals. The involvement of KOR ligands in nociception, diuresis, emotion, cognition, and immune system has been extensively studied. Omics-based methods are preferable to understand the signaling cascade after KOR activation in a systematic manner. In this study, an in-depth quantitative phosphoproteomic analysis resulted in 305 phosphosites, which were significantly changed in three KOR-overexpressed cells upon treatment with two KOR agonists. The subsequent substrate-kinase prediction analysis revealed that 18 potential kinases might be activated under stimulation of the agonists. We found that phosphorylation of PAK1/2 (p21-activated kinase 1/2) was induced by KOR agonists, resulting in reduced actin stress fibers and cytoskeletal reorganization. In summary, this quantitative phosphoproteomics-based research studied the downstream phosphorylation events upon KOR activation, which may shed light on the investigations of KOR signaling pathway and targeted therapy for KOR-related diseases.


Subject(s)
Enzyme Activators/pharmacology , Phosphorylation/drug effects , Receptors, Opioid, kappa/agonists , p21-Activated Kinases/metabolism , Enzyme Activation/drug effects , HEK293 Cells , Humans , Proteomics , Receptors, Opioid, kappa/metabolism
18.
BMC Genomics ; 19(1): 918, 2018 Dec 13.
Article in English | MEDLINE | ID: mdl-30545299

ABSTRACT

BACKGROUND: The molecular mechanisms underlying stress-influenced immune function of chicken (Gallus Gallus) are not clear. The stress models can be established effectively by feeding chickens corticosterone (CORT) hormone. The bursa of Fabricius is a unique central immune organ of birds. RNA-Seq technology was used to investigate differences in the expression profiles of immune-related genes and associated pathways in the bursa of Fabricius to clarify molecular mechanisms. The aim of this study was to broaden the understanding of the stress-influenced immune function in chickens. RESULTS: Differentially expressed genes (DEGs) in the bursa of Fabricius between experimental group (basal diet with added CORT 30 mg/kg; C_B group) and control group (basal diet; B_B group) were identified by using RNA-seq technology. In total, we found 1434 significant DEGs (SDEGs), which included 199 upregulated and 1235 downregulated genes in the C_B group compared with the B_B group. The immune system process GO term was the top significantly GO term, including MYD88, TLR4, IL15, VEGFA gene and so on. The cytokine-cytokine receptor interaction pathway and the Toll-like receptor signaling pathway were the key pathways affected by stress. The protein-protein interaction (PPI) analysis of the SDEGs showed that VEGFA, MyD88 and IL15 were hub genes and module analysis showed that MYD88, TLR4 and VEGFA play important roles in response to stress. CONCLUSION: This study showed that the VEGFA and ILs (such as IL15) via the cytokine-cytokine receptor interaction pathway, MYD88 and TLR4 via the Toll-like receptor signaling pathway may play important roles in the regulation of immune function under stress condition with CORT administration. The results of this study provide a reference for further studies of the molecular mechanisms of stress-influenced immune function.


Subject(s)
Bursa of Fabricius/metabolism , Chickens/genetics , Corticosterone/pharmacology , Immunity/drug effects , Transcriptome/drug effects , Animals , Bursa of Fabricius/drug effects , Bursa of Fabricius/immunology , Chickens/immunology , Cluster Analysis , Diet , Immunity/genetics , Interleukin-15/genetics , Interleukin-15/metabolism , Models, Animal , Protein Interaction Maps/drug effects , RNA/chemistry , RNA/isolation & purification , RNA/metabolism , Sequence Analysis, RNA , Signal Transduction/drug effects , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Anal Chem ; 90(4): 2434-2439, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29376338

ABSTRACT

Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.

20.
BMC Public Health ; 18(1): 944, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30068329

ABSTRACT

BACKGROUND: Long-term excess exposure to environmental manganese (Mn) can lead to multi-system damage, especially in occupational populations. Therefore, we established a manganese-exposed workers healthy cohort (MEWHC), focusing on the systemic health effects related to Mn exposure. Here, we aimed to describe the follow-up activity for the MEWHC study and establish a standardized biological sample bank for the scientific management of high-quality biospecimens and the attached data from 2011 to 2017. METHODS: Baseline examinations for onsite workers were conducted, and the biobank for the MEWHC was first established in 2011; follow-up examinations occurred four times between July 2012 and November 2017. All questionnaires, clinical data and biological samples were routinely collected during each follow-up activity. Additional workers were recruited in 2016, which further enriched the resources of the biobank. RESULTS: A total of 2359 onsite workers and 612 retired workers at a ferromanganese refinery were enrolled in the prospective cohort, and their biological samples were obtained in the preliminary baseline survey and the follow-up investigation, including 2971 blood and urine samples from the cohort. In addition, 1524 hair samples, 1404 nail (toe and finger nails) and 1226 fecal samples were also collected. All specimens were preserved in the biobank, and the data were scientifically managed using a computer system. CONCLUSIONS: The MEWHC study in China provides an effective way to obtain biological samples such as plasma, DNA, hair and urine for storage in a biobank for further study. The standardized management of various samples is crucial for accessing high-quality biospecimens.


Subject(s)
Biological Specimen Banks , Environmental Monitoring/methods , Iron/analysis , Manganese/analysis , Occupational Exposure/analysis , Adult , China , Female , Follow-Up Studies , Humans , Iron/toxicity , Male , Manganese/toxicity , Middle Aged , Occupational Exposure/adverse effects , Occupational Health , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL