ABSTRACT
The genetic diversity of killer cell immunoglobulin-like receptors (KIRs) and human leukocyte antigen (HLA) genes influences the host's immune response to viral pathogens. This study aims to explore the impact of five single nucleotide polymorphisms (SNPs) in KIR3DL2 and HLA-A genes on hepatitis C virus (HCV) infection. A total of 2251 individuals were included in the case-control study. SNPs including KIR3DL2 rs11672983, rs3745902, rs1654644, and HLA-A rs3869062, rs12202296 were genotyped. By controlling various confounding factors using a modified logistic regression model, as well as incorporating stratified analysis, joint effects analysis, and multidimensional bioinformatics analysis, we analyzed the relationship between SNPs and HCV infection. The logistic regression analysis showed a correlation between KIR3DL2 rs11672983 AA, KIR3DL2 rs3745902 TT, and increased HCV susceptibility (p < 0.01). Stratified analysis indicated that KIR3DL2 rs1654644 and HLA-A rs3869062 also heightened HCV susceptibility in certain subgroups. A linear trend of rising HCV infection rates was observed when combining KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT (ptrend = 0.007). Bioinformatics analysis suggested these SNPs' regulatory potential and their role in altering messenger RNA secondary structure, implying their functional relevance in HCV susceptibility. Our findings indicate that KIR3DL2 rs11672983 AA and KIR3DL2 rs3745902 TT are significantly associated with increased susceptibility to HCV infection.
Subject(s)
Genetic Predisposition to Disease , Genotype , Hepatitis C , Polymorphism, Single Nucleotide , Humans , Male , Female , Case-Control Studies , Hepatitis C/genetics , Hepatitis C/virology , Hepatitis C/immunology , Middle Aged , Adult , HLA-A Antigens/genetics , Hepacivirus/genetics , Hepacivirus/immunology , Receptors, KIR/genetics , Aged , Receptors, KIR3DL2/geneticsABSTRACT
BACKGROUND: The prognostic value of triglyceride-glucose (TyG) related indices in non-alcoholic fatty liver disease (NAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD) is still unclear. This study aimed to determine the associations between TyG-related indices and long-term mortality in this population. METHODS: The data came from the National Health and Nutrition Examination Survey (NHANES III) and National Death Index (NDI). Baseline TyG, TyG combining with body mass index (TyG-BMI), and TyG combining with waist circumference (TyG-WC) indices were calculated, and mortality status was determined through 31 December 2019. Multivariate Cox and restricted cubic spline (RCS) regression models were performed to evaluate the relationship between TyG-related indices and long-term mortality among participants with NAFLD/MASLD. In addition, we examined the association between TyG-related indices and all-cause mortality within subgroups defined by age, sex, race/ethnicity, and fibrosis-4 index (FIB-4). RESULTS: There were 10,390 participants with completed ultrasonography and laboratory data included in this study. NAFLD was diagnosed in 3672/10,390 (35.3%) participants, while MASLD in 3556/10,390 (34.2%) amongst the overall population. The multivariate Cox regression analyses showed high levels of TyG-related indices, particularly in TyG-BMI and TyG-WC indices were significantly associated with the all-cause mortality, cardiovascular mortality, and diabetes mortality in either NAFLD or MASLD. The RCS curves showed a nonlinear trend between three TyG-related indices with all-cause mortality in either NAFLD or MASLD. Subgroup analyses showed that TyG-BMI and TyG-WC indices were more suitable for predicting all-cause mortality in patients without advanced fibrosis. CONCLUSION: Our study highlights the clinical value of TyG-related indices in predicting the survival of the NAFLD/MASLD population. TyG-BMI and TyG-WC indices would be the surrogate biomarkers for the follow-up of the population without advanced fibrosis.
Subject(s)
Biomarkers , Blood Glucose , Non-alcoholic Fatty Liver Disease , Nutrition Surveys , Triglycerides , Humans , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/diagnosis , Male , Female , Middle Aged , Triglycerides/blood , Risk Assessment , Blood Glucose/metabolism , Biomarkers/blood , Adult , Prognosis , Risk Factors , Time Factors , Aged , United States/epidemiology , Cause of Death , Predictive Value of Tests , Body Mass Index , Fatty Liver/mortality , Fatty Liver/blood , Fatty Liver/diagnosis , Waist CircumferenceABSTRACT
BACKGROUND: The H5N1 influenza virus is a cause of severe pneumonia. Co-infection of influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may lead to poor prognosis of patients during the COVID-19 epidemic. However, reports on patients co-infected with avian influenza virus and SARS-CoV-2 are scarce. CASE PRESENTATION: A 52-year-old woman presented with a fever, which has persisted for the past eight days, along with worsening shortness of breath and decreased blood pressure. Computed tomography (CT) revealed an air bronchogram, lung consolidation, and bilateral pleural effusion. The subsequent polymerase chain reaction (PCR) of the bronchoalveolar lavage fluid (BALF) revealed positivity for H5N1 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). CONCLUSION: The H5N1 influenza virus is a cause of severe pneumonia. The clinical presentation of the patient had a predomination of H5N1 influenza rather than COVID-19. A PCR analysis for the identification of the virus is necessary to reveal the pathogen causing the severe pneumonia. The patient exhibited an excellent prognosis upon the use of the appropriate antiviral medicine.
Subject(s)
COVID-19 , Coinfection , Influenza A Virus, H5N1 Subtype , Pneumonia , Female , Humans , Middle Aged , SARS-CoV-2 , COVID-19/diagnosis , Coinfection/diagnosisABSTRACT
Hepatitis B virus (HBV)/hepatitis C virus (HCV) coinfection accelerates liver fibrosis progression compared with HBV or HCV monoinfection. Octamer binding transcription factor 4 (OCT4) and Nanog are direct targets of the profibrogenic TGF-ß1 signaling cascade. We leveraged a coculture model to monitor the effects of HBV and HCV coinfection on fibrogenesis in both sodium taurocholate cotransporting polypeptide-transfected Huh7.5.1 hepatoma cells and LX2 hepatic stellate cells (HSCs). We used CRISPR-Cas9 to knock out OCT4 and Nanog to evaluate their effects on HBV-, HCV-, or TGF-ß1-induced liver fibrogenesis. HBV/HCV coinfection and HBx, HBV preS2, HCV Core, and HCV NS2/3 overexpression increased TGF-ß1 mRNA levels in sodium taurocholate cotransporting polypeptide-Huh7.5.1 cells compared with controls. HBV/HCV coinfection further enhanced profibrogenic gene expression relative to HBV or HCV monoinfection. Coculture of HBV and HCV monoinfected or HBV/HCV coinfected hepatocytes with LX2 cells significantly increased profibrotic gene expression and LX2 cell invasion and migration. OCT4 and Nanog guide RNA independently suppressed HBV-, HCV-, HBV/HCV-, and TGF-ß1-induced α-SMA, TIMP-1, and Col1A1 expression and reduced Huh7.5.1, LX2, primary hepatocyte, and primary human HSC migratory capacity. OCT4/Nanog protein expression also correlated positively with fibrosis stage in liver biopsies from patients with chronic HBV or HCV infection. In conclusion, HBV and HCV independently and cooperatively promote liver fibrogenesis through a TGF-ß1-induced OCT4/Nanog-dependent pathway.
Subject(s)
Hepatitis B/pathology , Hepatitis C/pathology , Liver Cirrhosis/pathology , Nanog Homeobox Protein/metabolism , Octamer Transcription Factor-3/metabolism , Transforming Growth Factor beta1/metabolism , Actins/biosynthesis , Adult , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Movement/physiology , Coinfection/pathology , Collagen Type I, alpha 1 Chain/biosynthesis , Female , Gene Knockout Techniques , Hepacivirus/metabolism , Hepatic Stellate Cells/pathology , Hepatic Stellate Cells/virology , Hepatitis B virus/metabolism , Hepatocytes/pathology , Hepatocytes/virology , Humans , Liver/pathology , Liver Cirrhosis/virology , Male , Nanog Homeobox Protein/genetics , Octamer Transcription Factor-3/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Tissue Inhibitor of Metalloproteinase-1/biosynthesisABSTRACT
TssJ-3 is an outer-membrane lipoprotein and is one of the key components of the type VI secretion system in Burkholderia pseudomallei. TssJ translocates effector proteins to target cells to induce innate immune response in the host. However, the tssJ gene has not been identified in B. pseudomallei and its function in this bacterium has not yet been characterized. tssJ-3 knockout and tssJ-3-complemented B. pseudomallei strains were constructed to determine the effects of tssJ-3 on bacterial growth, biofilm formation, flagellum synthesis, motility, host cell infection, and gene expression in B. pseudomallei. We found that the ΔtssJ-3 mutant strain of B. pseudomallei showed significantly suppressed biofilm formation, flagellum synthesis, bacterial growth, motility, and bacterial invasion into host cells (A549 cells). Furthermore, the ΔtssJ-3 mutation downregulated multiple key genes, including biofilm and flagellum-related genes in B. pseudomallei and induced interleukin-8 gene expression in host cells. These results suggest that tssJ-3, an important gene controlling TssJ-3 protein expression, has regulatory effects on biofilm formation and flagellum synthesis in B. pseudomallei. In addition, B. pseudomallei-derived tssJ-3 contributes to cell infiltration and intracellular replication. This study provides a molecular basis of tssJ-3 for developing therapeutic strategies against B. pseudomallei infections.
Subject(s)
Burkholderia pseudomallei , Melioidosis , Type VI Secretion Systems , Humans , Burkholderia pseudomallei/genetics , Virulence/genetics , Melioidosis/microbiology , Type VI Secretion Systems/genetics , Type VI Secretion Systems/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolismABSTRACT
Killer-cell immunoglobulin-like receptors 2DL4 (KIR2DL4) and the human leukocyte antigen class I-G (HLA-G) display vital parts in immune responses against hepatitis C virus (HCV) infection. We select four potentially functional single nucleotide polymorphisms (SNPs) of KIR/HLA to explore the associations between KIR2DL4/HLA-G genetic variants and HCV infection results. In the present case-control study, a total of 2225 HCV-infected high-risk subjects, including 1778 paid blood donors (PBD) and 447 drug users were consecutively recruited before treatment from 2011 to 2018. KIR2DL4-rs660773, KIR2DL4-rs660437, HLA-G-rs9380142, and HLA-G-rs1707 SNPs were sorted as genotypes in the subdivided groups, involving 1095 uninfected controls subjects, 432 spontaneous HCV clearance subjects and 698 HCV persistent infection subjects. After genotyping experiments using the TaqMan-MGB assay, modified logistic regression was used to calculate the correlation among the SNPs and HCV infection. The SNPs were functionally annotated using bioinformatics analysis. Following adjusting by age, sex, alanine aminotransferase, aspartate aminotransferase, IFNL3-rs12979860, IFNL3-rs8099917, and the infection route, the logistic regression analysis discovered that KIR2DL4-rs660773 and HLA-G-rs9380142 were correlated with vulnerability to HCV infection (all p < 0.05). In a locus-dosage way, compared with subjects carrying the rs9380142-AA or rs660773-AA genotypes, subjects with rs9380142-AG or rs660773-AG/GG (all p < 0.05) were more vulnerable to HCV infection; the overall impact of their risk genotypes (rs9380142-AGrs660773-AG/GG) was correlated with an elevated incidence of HCV infection (ptrend < 0.001). In the Haplotype analysis, patients with haplotype AG were more likely to contract HCV compared to those with the highest common AA haplotype (p = 0.002) were higher in susceptibility to infect HCV. The SNPinfo web server estimated that rs660773 is a transcription factor binding site, whereas rs9380142 is a potential microRNA-binding site. In two Chinese high-risk population (PBD and drug uesrs), KIR2DL4 rs660773-G and HLA-G rs9380142-G alleles polymorphisms are related to HCV susceptibility. KIR2DL4/HLA-G pathway genes might affect the innate immune responses by regulating KIR2DL4/HLA-G transcription and translation play a potential role in HCV infection.
Subject(s)
Hepatitis C , Receptors, KIR2DL4 , Humans , East Asian People , Genetic Predisposition to Disease , Genotype , Hepatitis C/genetics , HLA-G Antigens/genetics , Polymorphism, Single Nucleotide , Receptors, KIR2DL4/geneticsABSTRACT
BACKGROUND: Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling has been known to play a critical role in maintaining cellular and tissue homeostasis, which also has an essential role in the inflammatory response. However, it remains unidentified whether and how the macrophage PTEN may govern the innate immune signaling stimulator of interferon genes (STING) mediated inflammation and hepatocyte necroptosis in APAP-induced liver injury (AILI). METHODS: Myeloid-specific PTEN knockout (PTENM-KO) and floxed PTEN (PTENFL/FL) mice were treated with APAP (400 mg/kg) or PBS. In a parallel in vitro study, bone marrow-derived macrophages (BMMs) were isolated from these conditional knockout mice and transfected with CRISPR/Cas9-mediated Notch1 knockout (KO) or CRISPR/Cas9-mediated STING activation vector followed by LPS (100 ng/ml) stimulation. RESULTS: Here, we report that myeloid-specific PTEN knockout (PTENM-KO) mice were resistant to oxidative stress-induced hepatocellular injury with reduced macrophage/neutrophil accumulation and proinflammatory mediators in AILI. PTENM-KO increased the interaction of nuclear Notch intracellular domain (NICD) and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in the macrophage nucleus, reducing reactive oxygen species (ROS) generation. Mechanistically, it is worth noting that macrophage NICD and NRF2 co-localize within the nucleus under inflammatory conditions. Additionally, Notch1 promotes the interaction of immunoglobulin kappa J region (RBPjκ) with NRF2. Disruption of the Notch1 signal in PTEN deletion macrophages, reduced RBPjκ and NRF2 binding, and activated STING signaling. Moreover, PTENM-KO macrophages with STING activated led to ROS generation and TNF-α release, resulting in hepatocyte necroptosis upon co-culture with primary hepatocytes. CONCLUSIONS: Our findings demonstrate that the macrophage PTEN-NICD/NRF2-STING axis is critical to regulating oxidative stress-induced liver inflammation and necroptosis in AILI and implies the therapeutic potential for managing sterile liver inflammation. Video Abstract.
Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , NF-E2-Related Factor 2 , Animals , Mice , NF-E2-Related Factor 2/metabolism , Reactive Oxygen Species/metabolism , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Necroptosis , Liver/metabolism , Macrophages/metabolism , Inflammation/metabolism , Mice, Knockout , Mice, Inbred C57BLABSTRACT
BACKGROUND: Serum lipids variations are closely related to the sepsis progression; however, their value for patients with pyogenic liver abscesses (PLA) has rarely been studied. We investigated the serum lipid level variations in patients with PLA and its predictive value to the disease. METHODS: The study included 328 patients with PLA hospitalized in the First Affiliated Hospital of Nanjing Medical University from January 2017 to December 2021; 35 (10.67%) in the severe group (SG) and 293 (89.33%) in the non-severe group (nSG). Their clinical records were analyzed retrospectively, and dynamic curves were drawn to clarify the changes in different indicators during the course of the disease. RESULTS: High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and lipoprotein(a) (Lp(a)) in the SG were significantly lower than those in nSG (P < 0.001). Total cholesterol (TC) at baseline (OR = 0.184, P < 0.001) was an independent risk factor for severe patients and had the highest predictive value, with an area under the curve of 0.859 and a cut-off value of 2.70 mmol/L (sensitivity = 94.3%, specificity = 63.5%). For patients who met the criteria for drainage surgery, TC, HDL-C and LDL-C levels continued to decrease with antibiotic therapy alone before drainage and began to increase after the surgery. CONCLUSIONS: Low TC level on admission is an independent risk factor for the progression of severe illness in PLA patients, with the highest predictive value surpassing other routine clinical indices. Abscess drainage should be performed as soon as possible for patients whose TC continues to decline after medical treatment.
Subject(s)
Cholesterol , Liver Abscess, Pyogenic , Humans , Retrospective Studies , Cholesterol, LDL , Triglycerides , Prognosis , Clinical Relevance , Cholesterol, HDL , PolyestersABSTRACT
Cumulative evidence indicates the important role of Nur77 in organ fibrogenesis. However, the role of Nur77 in hepatitis B virus (HBV)-related liver fibrosis (LF) remains unclear. Cells were transfected with the microRNA mimic miRNA-506-3p or inhibitor, and pcDNA3.1-Nur77 or Nur77 guide RNA. Exosomes were isolated from HBV-infected HepG2-sodium taurocholate cotransporting polypeptide cells. The levels of miR-506-3p, Nur77, and LF-related genes and proteins were detected by quantitative polymerase chain reaction (qPCR) and western blot analysis, respectively. The pathology of the liver from HBV-infected patients was examined using hematoxylin-eosin and Masson's staining. The expression of Nur77 in liver tissue was determined by immunohistochemistry, and the LF score was assessed using the METAVIR system. The relationship between miR-506-3p/Nur77 and LF score was analyzed by correlation analysis. HBV infection downregulated miR-506-3p expression and upregulated Nur77 levels in hepatocytes. Exosomes from HBV-infected hepatocytes also displayed decreased gene expression of miR-506-3p and increased expressions of Nur77- and LF-related genes in stellate cells compared with exosomes from hepatocytes with mock infection. These changes were reversed by Nur77 guide RNA. Nur77 expression in liver tissue was strongly correlated with LF, whereas serum miR-506-3p was strongly negatively correlated with LF. Exosomes from HBV-infected hepatocytes activate stellate cells and aggravate LF through the miR-506-3p/Nur77 pathway. These exosomes may be the basis of a promising therapeutic strategy.
ABSTRACT
Methods: Using a CRISPR/Cas9 gene-editing system, EFTUD2 single allele knockout HepG2.2.15 cells were constructed. Subsequently, the HBV biomarkers in EFTUD2+/- HepG2.2.15 cells and wild-type (WT) cells with or without IFN-α treatment were detected. And the EFTUD2-regulated genes were then identified using mRNA sequence. Selected gene mRNA variants and their proteins were examined by qRT-PCR and Western blotting. To confirm the effects of EFTUD2 on HBV replication and IFN-stimulated gene (ISG) expression, a rescue experiment in EFTUD2+/- HepG2.2.15 cells was performed by EFTUD2 overexpression. Results: IFN-induced anti-HBV activity was found to be restricted in EFTUD2+/- HepG2.2.15 cells. The mRNA sequence showed that EFTUD2 could regulate classical IFN and virus response genes. Mechanistically, EFTUD2 single allele knockout decreased the expression of ISG-encoded proteins, comprising Mx1, OAS1, and PKR (EIF2AK2), through mediated gene splicing. However, EFTUD2 did not affect the expression of Jak-STAT pathway genes. Furthermore, EFTUD2 overexpression could restore the attenuation of IFN anti-HBV activity and the reduction of ISG resulting from EFTUD2 single allele knockout. Conclusion: EFTUD2, the spliceosome factor, is not IFN-inducible but is an IFN effector gene. EFTUD2 mediates IFN anti-HBV effect through regulation of gene splicing for certain ISGs, including Mx1, OAS1, and PKR. EFTUD2 does not affect IFN receptors or canonical signal transduction components. Therefore, it can be concluded that EFTUD2 regulates ISGs using a novel, nonclassical mechanism.
Subject(s)
Janus Kinases , Spliceosomes , Humans , Hep G2 Cells , Hepatitis B virus/genetics , RNA, Messenger/genetics , Signal Transduction , STAT Transcription Factors , Virus ReplicationABSTRACT
BACKGROUND: The elongation factor Tu GTP-binding domain-containing 2 gene (EFTUD2) participates in antiviral immune responses. However, the association between genetic polymorphisms of EFTUD2 and hepatitis B virus (HBV) infection susceptibility has not been well-studied. We analyzed the relationship between single nucleotide polymorphisms (SNPs) of EFTUD2 and HBV infection susceptibility and clarified the potential function. METHODS: In total, 448 control subjects and 379 patients with chronic HBV infection from Zhangjiagang First People's Hospital (Jiangsu, China) were enrolled. Sequenom iPLEX assay was used to detect genotypes of four SNPs (rs1071682, rs2277617, rs2289674, and rs3809756). Dual-luciferase reporter vectors with wild-type A and mutant-type C alleles of EFTUD2 rs3809756 were transfected into HepG2 cells to explore effects on transcription activity. RESULTS: Only rs3809756 was significantly associated with HBV infection susceptibility (P < .05). The risk of HBV infection was higher in individuals carrying the rs3809756-CC genotype than in those carrying the rs3809756-AA genotype (odds ratio [OR] = 1.945, 95% confidence interval [CI] = 1.129-3.351, P = .017). Subgroup analysis based on the dominant model revealed that rs3809756-AC and rs3809756-CC carriers had a significantly higher risk of HBV infection than rs3809756-AA carriers among patients who were male (OR = 1.732, 95% CI = 1.218-2.464, P = .002), were aged ≥47 years (OR = 1.502, 95% CI = 1.050-2.148, P = .026), or without liver cirrhosis (OR = 1.407, 95% CI = 1.077-1.838, P = .012). In the dual-luciferase reporter assay, the relative luciferase activity of rs3809756-C was significantly lower than that of rs3809756-A (P < .05). CONCLUSION: EFTUD2 rs3809756A>C was associated with HBV infection susceptibility and might be involved in the downregulation of promoter activity.
Subject(s)
Hepatitis B, Chronic , Hepatitis B , Alleles , Case-Control Studies , Female , Gene Frequency , Genetic Predisposition to Disease , Genotype , Guanosine Triphosphate , Hepatitis B/genetics , Hepatitis B virus , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Humans , Male , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factors/genetics , Polymorphism, Single Nucleotide , Ribonucleoprotein, U5 Small Nuclear/geneticsABSTRACT
A multifunctional catalytic nanomaterial (Co-MOF@AuNP@ABEI) composed of cobalt-doped metal-organic frameworks (Co-MOF), gold nanoparticles (AuNP), and N-(4-aminobutyl)-N-(ethylisoluminol) (ABEI) is reported. Co-MOF@AuNP@ABEI exhibits high synergistic and zero-distance catalytic properties, which are beneficial to the improvement of the detection sensitivity of an electrochemiluminescent (ECL) biosensor. After coupling with the ECL system and 3D magnetic walking nanomachine amplification strategy, the Co-MOF@AuNP@ABEI can achieve an ultrasensitive ECL assay of Burkholderia pseudomallei with the limit of detection (LOD) of 60.3 aM, which is 2 and 4 orders of magnitude lower than individual ECL system without the nanomachine (4.97 fM) and individual walking nanomachine (340 fM), and superior to the pathogenic bacteria analyses in the previous report. Moreover, the LOD of the proposed ECL detection system for the determination of B. pseudomallei in serum sample was as low as 9.0 CFU mL-1. The relative standard deviations (RSD) of ECL intensity for the detection of five B. pseudomallei-spiked serum samples were 4.02%, 0.84%, 0.84%, 1.55%, and 0.21%, respectively. The recoveries of the ECL biosensor for the detection of B. pseudomallei DNA-spiked serum samples were 93.63 ~ 107.83%. Therefore, this work demonstrated that the developed multifunctional catalytic nanomaterial with synergistic and zero-distance catalytic properties can be used as excellent ECL signal reporter to improve the detection sensitivity of ECL biosensor.
Subject(s)
Biosensing Techniques , Burkholderia pseudomallei , Luminol/analogs & derivatives , Metal Nanoparticles , Metal-Organic Frameworks , Cobalt , Electrochemical Techniques , Gold , Luminescent Measurements , Luminol/chemistryABSTRACT
BACKGROUND: Hepatitis B virus (HBV) is a DNA virus belonging to the Hepadnaviridae family that has limited tissue and species specificity. Due to the persistence of HBV covalently closed circular DNA (cccDNA) in host cells after HBV infection, current antiviral drugs cannot eradicate HBV. Therefore, the development of an active cell culture system supporting HBV infection has become the key to studying HBV and developing effective therapeutic drugs. MAIN BODY: This review summarizes the significant research achievements in HBV cell culture systems in vitro, including embryonic hepatocytes and primary hepatocytes, which support the virus infection process most similar to that in the body and various liver tumor cells. The discovery of the bile-acid pump sodium-taurocholate co-transporting polypeptide (NTCP) as the receptor of HBV has advanced our understanding of HBV biology. Subsequently, various liver cancer cells overexpressing NTCP that support HBV infection have been established, opening a new door for studying HBV infection. The fact that induced pluripotent stem cells that differentiate into hepatocyte-like cells support HBV infection provides a novel idea for the establishment of an HBV cell culture system. CONCLUSION: Because of the host and tissue specificity of HBV, a suitable in vitro HBV infection system is critical for the study of HBV pathogenesis. Nevertheless, recent advances regarding HBV infection in vitro offer hope for better studying the biological characteristics of HBV, the pathogenesis of hepatitis B, the screening of anti-HBV drugs and the mechanism of carcinogenesis.
Subject(s)
Hepatitis B virus , Hepatitis B , Virus Replication , Hep G2 Cells , Hepatitis B/drug therapy , Hepatitis B virus/physiology , Hepatocytes/virology , HumansABSTRACT
The relationship between hepatitis B virus (HBV) and nonhepatocellular cancers remains inconclusive. This large case-control study aimed to assess the associations between HBV infection status and multiple cancers. Cases (n = 50 392) and controls (n = 11 361) were consecutively recruited from 2008 to 2016 at the First Affiliated Hospital of Nanjing Medical University. Multivariable adjusted odds ratios (aORs) and 95% confidence intervals (95% CIs) were estimated using logistic regression by adjusting age and gender. A meta-analysis based on published studies was also performed to verify the associations. Of these, 12.1% of cases and 5.5% of controls were hepatitis B surface antigen (HBsAg) seropositive. We observed significant associations between HBsAg seropositivity and esophagus cancer (aOR [95% CI] = 1.32 [1.13-1.54]), stomach cancer (1.46 [1.30-1.65]), hepatocellular carcinoma (HCC; 39.11 [35.08-43.59]), intrahepatic and extrahepatic bile duct carcinoma (ICC and ECC; 3.83 [2.58-5.67] and 1.72 [1.28-2.31]), pancreatic cancer (PaC; 1.37 [1.13-1.65]), non-Hodgkin lymphoma (NHL; 1.88 [1.61-2.20]) and leukemia (11.48 [4.05-32.56]). Additionally, compared to participants with HBsAg-/anti-HBs-/anti-HBc-, participants with HBsAg-/anti-HBs-/anti-HBc+, indicating past HBV-infected, had an increased risk of esophagus cancer (aOR [95% CI] = 1.46 [1.24-1.73]), stomach cancer (1.20 [1.04-1.39]), HCC (4.80 [3.95-5.84]) and leukemia (15.62 [2.05-119.17]). Then the overall meta-analysis also verified that HBsAg seropositivity was significantly associated with stomach cancer (OR [95% CI] = 1.23 [1.14-1.33]), ICC (4.05 [2.78-5.90]), ECC (1.73 [1.30-2.30]), PaC (1.26 [1.09-1.46]), NHL (1.95 [1.55-2.44]) and leukemia (1.54 [1.26-1.88]). In conclusion, both our case-control study and meta-analysis confirmed the significant association of HBsAg seropositivity with stomach cancer, ICC, ECC, PaC, NHL and leukemia. Of note, our findings also suggested that the risk of stomach cancer elevated for people whoever exposed to HBV.
Subject(s)
Hepatitis B Surface Antigens/metabolism , Hepatitis B/diagnosis , Neoplasms/epidemiology , Adult , Aged , Case-Control Studies , China/epidemiology , Female , Hepatitis B/metabolism , Humans , Male , Middle Aged , Neoplasms/virologyABSTRACT
Long noncoding RNAs (lncRNAs) play a critical role in the regulation of many important cellular processes. However, the mechanisms by which lncRNAs regulate viral infection and host immune responses are not well understood. We sought to explore lncRNA regulation of hepatitis C virus (HCV) infection and interferon response. We performed RNA sequencing (RNAseq) in Huh7.5.1 cells with or without interferon alpha (IFNα) treatment. Clustered regularly interspaced short palindromic repeats/Cas9 guide RNA (gRNA) was used to knock out selected genes. The promoter clones were constructed, and the activity of related interferon-stimulated genes (ISGs) were detected by the secrete-pair dual luminescence assay. We constructed the full-length and four deletion mutants of an interferon-induced lncRNA RP11-288L9.4 (lncRNA-IFI6) based on predicted secondary structure. Selected gene mRNAs and their proteins, together with HCV infection, in Huh7.5.1 cells and primary human hepatocytes (PHHs) were monitored by quantitative real-time PCR (qRT-PCR) and western blot. We obtained 7,901 lncRNAs from RNAseq. A total of 1,062 host-encoded lncRNAs were significantly differentially regulated by IFNα treatment. We found that lncRNA-IFI6 gRNA significantly inhibited HCV infection compared with negative gRNA control. The expression of the antiviral ISG IFI6 was significantly increased following lncRNA-IFI6 gRNA editing compared with negative gRNA control in Japanese fulminant hepatitis 1 (JFH1)-infected Huh7.5.1 cells and PHHs. We observed that lncRNA-IFI6 regulation of HCV was independent of Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling. lncRNA-IFI6 negatively regulated IFI6 promoter function through histone modification. Overexpression of the truncated spatial domain or full-length lncRNA-IFI6 inhibited IFI6 expression and increased HCV replication. Conclusion: A lncRNA, lncRNA-IFI6, regulates antiviral innate immunity in the JFH1 HCV infection model. lncRNA-IFI6 regulates HCV infection independently of the JAK-STAT pathway. lncRNA-IFI6 exerts its regulatory function via promoter activation and histone modification of IFI6 through its spatial domain.
Subject(s)
Hepacivirus/physiology , Hepatitis C/virology , Interferon-alpha/physiology , RNA, Long Noncoding/physiology , Cells, Cultured , HumansSubject(s)
Liver Cirrhosis , Polycystic Kidney, Autosomal Recessive , Female , Humans , Adolescent , MutationABSTRACT
BACKGROUND: Non-canonical Wnt pathways play important roles in liver fibrosis. Notum is a newly discovered inhibitor to Wnt proteins. This study was to investigate anti-fibrotic effects of Notum. METHODS: 53 patients with hepatitis B virus (HBV) infection as well as a cell co-culture system of LX-2 and Hep AD38 cells were engaged in this study. Clinical, biological and virological data of each patient were analyzed. Cell viability was detected at different time points. mRNA and protein levels of NFATc1 (Nuclear factor of activated T-cells), Jnk, α-SMA, Col1A1 and TIMP-1 were detected both in LX-2 and liver tissue. Protein levels of NFATc1 and Jnk in liver tissue and their correlations with fibrosis score were analyzed. RESULTS: Hepatitis B virus replication up-regulated Wnt5a induced NFATc1 and Jnk activity in Hep AD38. Notum suppressed NFATc1, Jnk and fibrosis genes expression, reduced cell viability in co-cultured LX-2 cells induced by HBV. Interestingly, Patients with HBV DNA > 5log copies/ml had higher mRNA levels of NFATc1 and fibrosis genes than patients with HBV DNA < 5log copies/ml. Most importantly, protein expressions of NFATc1 and pJnk have positive correlations with liver fibrosis scores in HBV-infected patients. CONCLUSIONS: Our data showed that Notum inhibited HBV-induced liver fibrosis through down-regulating Wnt 5a mediated non-canonical pathways. This study shed light on anti-fibrotic treatment.
Subject(s)
Esterases/administration & dosage , Hepatitis B/complications , Liver Cirrhosis/prevention & control , Wnt-5a Protein/antagonists & inhibitors , Actins/metabolism , Adult , Cell Survival , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Female , Hepatitis B virus/physiology , Humans , Liver Cirrhosis/metabolism , Liver Cirrhosis/virology , MAP Kinase Kinase 4/metabolism , Male , NFATC Transcription Factors/analysis , NFATC Transcription Factors/metabolism , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transfection , Virus Replication , Wnt Signaling Pathway , Wnt-5a Protein/metabolismABSTRACT
Mutations in the renal sodium-dependent phosphate cotransporters NPT2a and NPT2c have been reported in patients with renal stone disease and nephrocalcinosis. Oral phosphate supplementation is currently thought to reduce risk by reversing the hypercalciuria, but the exact mechanism remains unclear and the relative contribution of modifiers of mineralization such as osteopontin (Opn) to the formation of renal mineral deposits in renal phosphate wasting disorders has not been studied. We observed a marked decrease of renal gene expression and urinary excretion of Opn in Npt2a-/- mice, a mouse model of these disorders, at baseline. Following supplementation with phosphate Opn gene expression was restored to wild-type levels in Npt2a-/- mice; however, urine excretion of the protein remained low. To further investigate the role of Opn, we used a double-knockout strategy, which provides evidence that loss of Opn worsens the nephrocalcinosis and nephrolithiasis observed in these mice on a high-phosphate diet. These studies suggest that impaired Opn gene expression and urinary excretion in Npt2a-/- mice may be an additional risk factor for nephrolithiasis, and normalizing urine Opn levels may improve the therapy of phosphaturic disorders.