Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
BMC Genomics ; 23(1): 698, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209069

ABSTRACT

BACKGROUND: The dried stem of Cistanche, is a famous Chinese traditional medicine. The main active pharmacodynamic components are phenylethanol glycosides (PhGs). Cistanche tubulosa produces higher level of PhGs in its stems than that of Cistanche deserticola. However, the key genes in the PhGs biosynthesis pathway is not clear in C. tubulosa. RESULTS: In this study, we performed the full-length transcriptome sequencing and gene expression profiling of C. tubulosa using PacBio combined with BGISEQ-500 RNA-seq technology. Totally, 237,772 unique transcripts were obtained, ranging from 199 bp to 31,857 bp. Among the unique transcripts, 188,135 (79.12%) transcripts were annotated. Interestingly, 1080 transcripts were annotated as 22 enzymes related to PhGs biosynthesis. We measured the content of echinacoside, acteoside and total PhGs at two development stages, and found that the content of PhGs was 46.74% of dry matter in young fleshy stem (YS1) and then decreased to 31.22% at the harvest stage (HS2). To compare with YS1, 13,631 genes were up-regulated, and 15,521 genes were down regulated in HS2. Many differentially expressed genes (DEGs) were identified to be involved in phenylpropanoid biosynthesis pathway, phenylalanine metabolism pathway, and tyrosine metabolism pathway. CONCLUSIONS: This is the first report of transcriptome study of C. tubulosa which provided the foundation for understanding of PhGs biosynthesis. Based on these results, we proposed a potential model for PhGs biosynthesis in C. tubulosa.


Subject(s)
Cistanche , Phenylethyl Alcohol , Cistanche/genetics , Cistanche/metabolism , Gene Expression Profiling , Glycosides , Phenylalanine/metabolism , Phenylethyl Alcohol/metabolism , Tyrosine/metabolism
2.
Int J Mol Sci ; 23(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36077124

ABSTRACT

Seed size is a key factor affecting crop yield and a major agronomic trait concerned in peanut (Arachis hypogaea L.) breeding. However, little is known about the regulation mechanism of peanut seed size. In the present study, a peanut small seed mutant1 (ssm1) was identified through irradiating peanut cultivar Luhua11 (LH11) using 60Coγ ray. Since the globular embryo stage, the embryo size of ssm1 was significantly smaller than that of LH11. The dry seed weight of ssm1 was only 39.69% of the wild type LH14. The seeds were wrinkled with darker seed coat. The oil content of ssm1 seeds were also decreased significantly. Seeds of ssm1 and LH11 were sampled 10, 20, and 40 days after pegging (DAP) and were used for RNA-seq. The results revealed that genes involved in plant hormones and several transcription factors related to seed development were differentially expressed at all three stages, especially at DAP10 and DAP20. Genes of fatty acid biosynthesis and late embryogenesis abundant protein were significantly decreased to compare with LH11. Interestingly, the gene profiling data suggested that PKp2 and/or LEC1 could be the key candidate genes leading to the small seed phenotype of the mutant. Our results provide valuable clues for further understanding the mechanisms underlying seed size control in peanut.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Arachis/metabolism , Gene Expression Profiling , Plant Breeding , Seeds/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL