Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 25(1): 102-116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38012418

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapies have successfully treated hematological malignancies. Macrophages have also gained attention as an immunotherapy owing to their immunomodulatory capacity and ability to infiltrate solid tumors and phagocytize tumor cells. The first-generation CD3ζ-based CAR-macrophages could phagocytose tumor cells in an antigen-dependent manner. Here we engineered induced pluripotent stem cell-derived macrophages (iMACs) with toll-like receptor 4 intracellular toll/IL-1R (TIR) domain-containing CARs resulting in a markedly enhanced antitumor effect over first-generation CAR-macrophages. Moreover, the design of a tandem CD3ζ-TIR dual signaling CAR endows iMACs with both target engulfment capacity and antigen-dependent M1 polarization and M2 resistance in a nuclear factor kappa B (NF-κB)-dependent manner, as well as the capacity to modulate the tumor microenvironment. We also outline a mechanism of tumor cell elimination by CAR-induced efferocytosis against tumor cell apoptotic bodies. Taken together, we provide a second-generation CAR-iMAC with an ability for orthogonal phagocytosis and polarization and superior antitumor functions in treating solid tumors relative to first-generation CAR-macrophages.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Receptors, Antigen, T-Cell , T-Lymphocytes , Cell Line, Tumor , Receptors, Chimeric Antigen/genetics , Immunotherapy, Adoptive/methods , Macrophages/pathology , Tumor Microenvironment
3.
Plant Physiol ; 194(3): 1906-1922, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-37987562

ABSTRACT

Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.


Subject(s)
Malus , Salt Tolerance , Salt Tolerance/genetics , Malus/metabolism , 14-3-3 Proteins/genetics , 14-3-3 Proteins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
4.
J Transl Med ; 22(1): 386, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664838

ABSTRACT

BACKGROUND: Sequencing the mitochondrial genome has been increasingly important for the investigation of primary mitochondrial diseases (PMD) and mitochondrial genetics. To overcome the limitations originating from PCR-based mtDNA enrichment, we set out to develop and evaluate a PCR-independent approach in this study, named Pime-Seq (PCR-independent mtDNA enrichment and next generation Sequencing). RESULTS: By using the optimized mtDNA enrichment procedure, the mtDNA reads ratio reached 88.0 ± 7.9% in the sequencing library when applied on human PBMC samples. We found the variants called by Pime-Seq were highly consistent among technical repeats. To evaluate the accuracy and reliability of this method, we compared Pime-Seq with lrPCR based NGS by performing both methods simultaneously on 45 samples, yielding 1677 concordant variants, as well as 146 discordant variants with low-level heteroplasmic fraction, in which Pime-Seq showed higher reliability. Furthermore, we applied Pime-Seq on 4 samples of PMD patients retrospectively, and successfully detected all the pathogenic mtDNA variants. In addition, we performed a prospective study on 192 apparently healthy pregnant women during prenatal screening, in which Pime-Seq identified pathogenic mtDNA variants in 4 samples, providing extra information for better health monitoring in these cases. CONCLUSIONS: Pime-Seq can obtain highly enriched mtDNA in a PCR-independent manner for high quality and reliable mtDNA deep-sequencing, which provides us an effective and promising tool for detecting mtDNA variants for both clinical and research purposes.


Subject(s)
DNA, Mitochondrial , High-Throughput Nucleotide Sequencing , Mitochondrial Diseases , Polymerase Chain Reaction , Humans , DNA, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing/methods , Female , Polymerase Chain Reaction/methods , Mitochondrial Diseases/genetics , Mitochondrial Diseases/diagnosis , Pregnancy , Reproducibility of Results , Male , Adult
5.
Plant Physiol ; 193(4): 2413-2429, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37647542

ABSTRACT

Plant flowering time is induced by environmental and endogenous signals perceived by the plant. The MCM1-AGAMOUSDEFICIENS-Serum Response Factor-box (MADS-box) protein SHORT VEGETATIVE PHASE (SVP) is a pivotal repressor that negatively regulates the floral transition during the vegetative phase; however, the transcriptional regulatory mechanism remains poorly understood. Here, we report that CmSVP, a chrysanthemum (Chrysanthemum morifolium Ramat.) homolog of SVP, can repress the expression of a key flowering gene, a chrysanthemum FLOWERING LOCUS T-like gene (CmFTL3), by binding its promoter CArG element to delay flowering in the ambient temperature pathway in chrysanthemum. Protein-protein interaction assays identified an interaction between CmSVP and CmTPL1-2, a chrysanthemum homologue of TOPLESS (TPL) that plays critical roles as transcriptional corepressor in many aspects of plant life. Genetic analyses revealed the CmSVP-CmTPL1-2 transcriptional complex is a prerequisite for CmSVP to act as a floral repressor. Furthermore, overexpression of CmSVP rescued the phenotype of the svp-31 mutant in Arabidopsis (Arabidopsis thaliana), overexpression of AtSVP or CmSVP in the Arabidopsis dominant-negative mutation tpl-1 led to ineffective late flowering, and AtSVP interacted with AtTPL, confirming the conserved function of SVP in chrysanthemum and Arabidopsis. We have validated a conserved machinery wherein SVP partially relies on TPL to inhibit flowering via a thermosensory pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Chrysanthemum , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis Proteins/metabolism , Co-Repressor Proteins/genetics , Chrysanthemum/genetics , Chrysanthemum/metabolism , Flowers/physiology , Gene Expression Regulation, Plant
6.
Langmuir ; 40(17): 9020-9027, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38632903

ABSTRACT

We prepared BiOCl, BiO(ClBr), BiO(ClBrI), and BiO[ClBrI(CO3)0.5] materials using a simple coprecipitation method. It was found that adjusting the number of anions in the anion layer was conducive to adjusting the band structure of BiOX and could effectively promote the migration and separation of photogenerated carriers, thus improving the photocatalytic activity. We first selected methyl orange (MO) as the study pollutant and compared it with BiOCl, BiO(ClBr), and BiO(ClBrI). The first-order kinetic constants of MO degradation by BiO[ClBrI(CO3)0.5] increased by 90.3, 33.9, and 3.1 times, respectively. The photocatalytic degradation rate of methylene blue by BiO[ClBrI(CO3)0.5] was 89.5%, indicating the excellent photocatalytic performance of BiO[ClBrI(CO3)0.5]. The stability of BiO[ClBrI(CO3)0.5] was demonstrated through cyclic experiments and XRD analysis before and after the reaction. The photocatalytic degradation of MO by BiO[ClBrI(CO3)0.5] showed that h+ and 1O2 were the main active oxidizing species and •O2- was the secondary active substance. Overall, our work provides new ideas for the synthesis and degradation of organic pollutants by using two-dimensional anionic high-entropy materials.

7.
Clin Chem Lab Med ; 62(11): 2205-2214, 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-38742665

ABSTRACT

OBJECTIVES: Harmonization has been recommended by the International Organization for Standard (ISO) to achieve equivalent results across in vitro diagnostic measurement devices (IVD-MDs). We aim to evaluate the effectiveness of Bland-Altman plot-based harmonization algorithm (BA-BHA) created in this study and compare it with weighted Deming regression-based harmonization algorithm (WD-BHA) proposed in ISO 21151:2020. METHODS: Eighty patient sera were used as the harmonization reference material (HRM) to develop IVD-MD-specific harmonization algorithms. Another panel of 40 patient sera was used to validate the effectiveness of harmonization algorithms. We compared regression slopes, intercepts, Bland-Altman plot layouts, percent differences, limits of agreement (LoAs), between-method coefficients of variation (CV) before and after harmonization. RESULTS: After harmonization by WD-BHA, acceptable slopes and intercepts between measured values and HRM targets were observed in weighted Deming regression, but not in Passing-Bablok analysis. Mean differences were -5.5 to 5.0 % and differences at specific levels were -33.9 to 23.9 %. LoAs were -64.6 to 74.6 %. Between-method CV was 22.9 % (±12.9 %). However, after harmonization by BA-BHA, both weighted Deming and Passing-Bablok regressions equations presented harmonized results. Mean differences were -0.3 to 0.2 % and differences at specific levels were -1.1 to 1.6 %. LoAs were -23.3 to 23.2 %. Between-method CV was 8.4 % (±4.0 %). The data points were evenly distributed at both sides of the mean in Bland-Altman plots. CONCLUSIONS: The inequivalence of test results between different methods can be improved but unacceptable analytical differences at specific levels may be hidden in terms of an acceptable slope and intercept on WD-BHA. The new protocol BA-BHA may be a viable alternative to optimize the harmonization for immunoassays.


Subject(s)
Algorithms , Humans , Immunoassay/methods , Immunoassay/standards , Reference Standards
8.
J Sci Food Agric ; 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39299927

ABSTRACT

BACKGROUND: Stimuli-responsive emulsions have garnered significant attention for their ability to enhance sensory qualities and control the release of encapsulated nutrient in emulsion-based products. However, the characteristics of synthetic materials of fabricating stimuli-responsive emulsions have been a crucial limitation in the food industry. Regulating the behavior of molecules at the interface could potentially achieve the desired stimuli-responsive behavior, but currently there is limited information available. RESULTS: High-internal-phase emulsions (HIPEs) were fabricated for the encapsulation of allicin, stabilized by a complex of 20 g kg-1 whey protein amyloid fibrils (WPF) and 20 g kg-1 glycyrrhizin fibers (GA). The intermolecular interactions between WPF and GA in the fiber complexes were predominantly governed by hydrophobic and electrostatic forces. These complexes adsorbed and stacked around the oil droplets, forming a protective interfacial film that enhanced droplet stability. An increased proportion of WPF (WPF = 3:1 or 4:1) surrounding the oil droplets enhanced the accelerated storage stability of HIPEs, with instability indexes approaching 0.2. Additionally, HIPEs displayed a temperature-dependent modulus, with the emulsion stabilized by a WPF ratio of 3:1 showing the highest modulus at 85 °C. The encapsulation efficiency of allicin in HIPEs ranged from 88.69 ± 6.62% to 101 ± 1.37% at 25 °C, and from 31.95 ± 1.92% to 78.69 ± 4.63% after incubation at 85 °C for 8 h. The release profile of allicin from the HIPEs exhibited thermal responsiveness, depending on the interfacial content of GA. CONCLUSION: These findings indicated that the thermal-responsive properties of HIPEs can be strategically engineered by manipulating their interfacial characteristics. © 2024 Society of Chemical Industry.

9.
Chemistry ; 29(53): e202301520, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37382237

ABSTRACT

Intermolecular [2+2] photodimerization provides a distinctive approach to construct photoresponsive fluorescent materials in a manner of switching on solid-state fluorescence. Herein, we report efficient photoactivation of bright solid-state fluorescence based on controllable intermolecular [2+2] photodimerization reaction of benzo[b]thiophene 1,1-dioxide (BTO) derivatives, which provides a simple and effective way to construct smart photoresponsive solid-state fluorescent materials. Rational choice of substituents in BTO molecular skeleton enables them to efficiently undergo photodimerization through regulating molecular stacking in crystal, and also leads to photoactivation of solid-state fluorescence due to the generation of brightly fluorescent photodimers. This intermolecular photodimerization reaction also offers an effective method to synthesize photostable AIEgens with purely through-space conjugation.

10.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(2): 341-345, 2023 Apr.
Article in Zh | MEDLINE | ID: mdl-37157086

ABSTRACT

We reported the comprehensive treatment of an elderly critically ill patient with pelvic fracture.The functions and quality of life of the patient were recovered after collaborative nursing by both family and hospital according to the general practice principle of both mental and physical rehabilitation.We summarized the diagnosis and treatment strategies of this case,aiming to provide reference for the clinical treatment of such cases.


Subject(s)
Hip Fractures , Humans , Aged , Hip Fractures/rehabilitation , Quality of Life , Multiple Organ Failure
11.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(6): 1011-1014, 2023 Dec 30.
Article in Zh | MEDLINE | ID: mdl-38173115

ABSTRACT

One case with ascites and lower limb edema as the initial manifestations was reported.The echocardiography revealed inferior vena cava and right atrial occupation,which combined with increased alpha fetoprotein and imaging examination,suggested liver malignant tumor combined with tumor thrombus of inferior vena cava and right atrium.After targeted therapy combined with immunotherapy,the tumor shrank and alpha fetoprotein decreased significantly,suggesting that the treatment was effective.The median survival time of the patient was 3 months.This patient had a clear history of cirrhosis due to hepatitis B and was clinically diagnosed with advanced liver cancer,which suggested the importance of early liver cancer screening.


Subject(s)
Liver Neoplasms , Vena Cava, Inferior , Humans , Vena Cava, Inferior/diagnostic imaging , Vena Cava, Inferior/pathology , alpha-Fetoproteins , Echocardiography , Heart Atria/diagnostic imaging , Heart Atria/pathology , Liver Neoplasms/pathology
12.
J Am Chem Soc ; 144(21): 9443-9450, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35603745

ABSTRACT

Efficient transfection of therapeutic agents and timely potency testing are two key factors hindering the development of cellular therapy. Here we present a cellular-nanoporation and exosome assessment device, a quantitative platform for nanochannel-based cell electroporation and exosome-based in situ RNA expression analysis. In its application to transfection of anti-miRNAs and/or chemotherapeutics into cells, we have systematically described the differences in RNA expression in secreted exosomes and assessed cellular therapies in real time.


Subject(s)
Exosomes , MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , Transfection
13.
Chemistry ; 28(70): e202202178, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36124833

ABSTRACT

Herein, we propose a rational design strategy by introducing photoactive thienyl and pyridyl groups into an AIE-active tetraarylethene skeleton to achieve highly efficient photochemistry-activated fluorescence enhancement from dominantly photo-physical aggregation-induced emission behavior, and prove that such photoactivated fluorescence enhancement is perfectly suited for superstable photocontrollable dual-mode patterning applications in both solution and solid matrix. It is found that the photoactivated fluorescence of designed AIEgen is attributed to the irreversible cyclized-dehydrogenation reaction under UV irradiation, and the oxidation product has a brighter fluorescence in both solution and solid states owning to its rigid and planar structure. The overall transformation rate of the AIEgen from its opened form to dehydrogenated form is up to nearly 100 % in a short period of UV irradiation, and the fast transformation and the stable product of this photochemical reaction guarantees super stability of photocontrolled patterning, which can be applied in photoactivated dual-mode patterning and advanced anti-counterfeiting.


Subject(s)
Fluorescent Dyes , Ultraviolet Rays , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence
14.
Mol Ther ; 29(2): 645-657, 2021 02 03.
Article in English | MEDLINE | ID: mdl-33278564

ABSTRACT

Chimeric antigen receptor T cell (CAR-T) therapy has revolutionized the clinical treatment of hematological malignancies due to the prominent anti-tumor effects. B cell maturation antigen (BCMA) CAR-T cells have demonstrated promising effects in patients with relapsed/refractory multiple myeloma. However, the dynamics of CAR-T cell proliferation and cytotoxicity in clinical patients remains unexplored. Here, we longitudinally profiled the transcriptomes of 55,488 T cells including CAR-T products, CAR-T cells, and endogenous T cells at the peak and remission phases in a plasma cell leukemia (PCL) patient treated with BCMA CAR-T cells by single-cell transcriptomic analysis. Our results showed distinct CAR-T and endogenous T cell subsets indicating stage-specific expression in proliferation, cytotoxicity, and intercellular signaling pathways. Furthermore, we found that CAR-T cells at peak phase gradually convert to a highly cytotoxic state from a highly proliferative state along a development trajectory. Moreover, re-analysis of a single cell study from CD8+ CD19 CAR-T confirmed our findings. These commonalities suggest conserved mechanisms for CAR-T treatment across hematological malignancies. Taken together, our current study provides insight into CAR-T cell dynamics during CAR-T therapy and proves that both BCMA CAR-T and CD19 CAR-T have similar transcriptional characteristics, especially at the CAR-T peak phase.


Subject(s)
B-Cell Maturation Antigen/immunology , Immunotherapy, Adoptive , Leukemia, Plasma Cell/genetics , Leukemia, Plasma Cell/therapy , Transcriptome , Antigens, CD19/immunology , Drug Resistance, Neoplasm , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunotherapy, Adoptive/methods , Leukemia, Plasma Cell/diagnosis , Leukemia, Plasma Cell/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Recurrence , Single-Cell Analysis/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Treatment Outcome
15.
Lipids Health Dis ; 21(1): 57, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780150

ABSTRACT

BACKGROUND: The incidence rate of metabolic-associated fatty liver disease (MAFLD) is increasing annually; however, there are still no effective methods for establishing an early diagnosis and conducting real-time tracing. Vaspin can affect the metabolic processes in the body, and it is closely associated with many metabolic diseases. Many previous studies have speculated on the association between vaspin and MAFLD, but the results of these studies have not been conclusive. This meta-analysis examined the differences in circulating vaspin levels between patients with MAFLD and healthy individuals. METHODS: Six databases and other sources were searched with free terms and Medical Subject Headings terms, and a total of 13 articles were included (900 cases and 669 controls). RevMan 5.3 and Stata 16 were used for analysis. The standardised mean difference (SMD) and 95% confidence interval (CI) were used to assess the overall outcomes. Cohen's kappa coefficient was applied to examine the differences between the two authors in the selection of studies and in the evaluation of the quality of evidence for the studies. RESULTS: The results demonstrated that there was no significant difference in the circulating vaspin levels between the MAFLD group and healthy group (SMD = 0.46, 95% CI: [- 0.12, 1.04]). The subgroup analysis suggested that area and body mass index (BMI) may be the sources of heterogeneity, and the results of univariate meta-regression analysis were consistent with those of the subgroup analysis (P = 0.005 and P < 0.001, respectively). Furthermore, BMI may better explain the source of heterogeneity (P = 0.032) in the multivariate meta-regression analysis. CONCLUSION: In summary, no significant correlation was observed between the circulating vaspin levels and MAFLD. BMI may be an important factor affecting this correlation, which may provide a reference for further studies on mechanism and diagnosis of MAFLD.


Subject(s)
Liver Diseases , Serpins , Body Mass Index , Humans
16.
Mikrochim Acta ; 189(10): 380, 2022 09 12.
Article in English | MEDLINE | ID: mdl-36094594

ABSTRACT

Health problems have been widely concerned by all mankind. Real-time monitoring of disease-related biomarkers can feedback the physiological status of human body in time, which is very helpful to the diseases management of healthcare. However, conventional non-flexible/rigid biochemical sensors possess low fit and comfort with the human body, hence hindering the accurate and comfortable long-time health monitoring. Flexible and stretchable materials make it possible for sensors to be continuously attached to the human body with good fit, and more precise and higher quality results can be obtained. Thus, tremendous attention has been paid to flexible biochemical sensors in point-of-care (POC) for real-time monitoring the entire disease process. Here, recent progress on flexible biochemical sensors for management of various diseases, focusing on chronic and communicable diseases, is reviewed, and the detection principle and performance of these flexible biochemical sensors are discussed. Finally, some directions and challenges are proposed for further development of flexible biochemical sensors.


Subject(s)
Point-of-Care Systems , Wearable Electronic Devices , Humans
17.
PLoS Comput Biol ; 16(9): e1007409, 2020 09.
Article in English | MEDLINE | ID: mdl-32997658

ABSTRACT

A basic-yet nontrivial-function which neocortical circuitry must satisfy is the ability to maintain stable spiking activity over time. Stable neocortical activity is asynchronous, critical, and low rate, and these features of spiking dynamics contribute to efficient computation and optimal information propagation. However, it remains unclear how neocortex maintains this asynchronous spiking regime. Here we algorithmically construct spiking neural network models, each composed of 5000 neurons. Network construction synthesized topological statistics from neocortex with a set of objective functions identifying naturalistic low-rate, asynchronous, and critical activity. We find that simulations run on the same topology exhibit sustained asynchronous activity under certain sets of initial membrane voltages but truncated activity under others. Synchrony, rate, and criticality do not provide a full explanation of this dichotomy. Consequently, in order to achieve mechanistic understanding of sustained asynchronous activity, we summarized activity as functional graphs where edges between units are defined by pairwise spike dependencies. We then analyzed the intersection between functional edges and synaptic connectivity- i.e. recruitment networks. Higher-order patterns, such as triplet or triangle motifs, have been tied to cooperativity and integration. We find, over time in each sustained simulation, low-variance periodic transitions between isomorphic triangle motifs in the recruitment networks. We quantify the phenomenon as a Markov process and discover that if the network fails to engage this stereotyped regime of motif dominance "cycling", spiking activity truncates early. Cycling of motif dominance generalized across manipulations of synaptic weights and topologies, demonstrating the robustness of this regime for maintenance of network activity. Our results point to the crucial role of excitatory higher-order patterns in sustaining asynchronous activity in sparse recurrent networks. They also provide a possible explanation why such connectivity and activity patterns have been prominently reported in neocortex.


Subject(s)
Action Potentials/physiology , Models, Neurological , Neural Networks, Computer , Algorithms , Animals , Computer Simulation , Markov Chains , Neocortex/physiology , Neurons/physiology
18.
J Sep Sci ; 44(11): 2290-2300, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33784422

ABSTRACT

A simple, green, and efficient mechanochemical approach was developed herein to prepare tunable magnetic graphene oxide nanoparticles. The obtained nanoparticles were successfully used as adsorbents in a magnetic dispersive solid-phase extraction method to extract three cationic dyes (i.e., thioflavine T, auramine-O, and basic orange 2) found in food samples. Our proposed approach also utilized high-performance liquid chromatography with ultraviolet detection. Several key variables affecting the extraction recovery were investigated. These included the sample pH, amount of extractant, extraction time, sample volume, elution solvent type and volume, and the stability and reusability of the magnetic graphene oxide nanoparticles. Under optimized conditions, the calibration curve was linear at a concentration range of 0.005-1.0 µg/mL with a correlation coefficient of 0.9992-0.9996. Moreover, the limits of detection were determined at 0.97-1.35 µg/mL. The extraction mechanism was investigated via ultraviolet-visible spectrophotometry and zeta-potential analyses. The developed method was used to analyze the above-mentioned cationic dyes in bean products and yellow fish samples. Notably, satisfactory spiked recoveries ranging from 90.7 to 104.9% were achieved.


Subject(s)
Fluorescent Dyes/analysis , Food Analysis , Food Contamination/analysis , Graphite/chemistry , Magnetite Nanoparticles/chemistry , Solid Phase Extraction , Benzophenoneidum/analysis , Benzothiazoles/analysis , Magnetic Phenomena
19.
Int J Clin Pract ; 75(12): e14791, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34482576

ABSTRACT

PURPOSE: We aimed to determine whether pretreatment red blood cell distribution width (RDW) is an efficient predictor of 30-day mortality in older patients undergoing hip fracture surgery. METHODS: In this prospective cohort study, 203 patients with hip fractures were eligible and followed up for at least 30 days. All the patients underwent medical examinations. RDW was measured using an automated hematology analyzer. To evaluate the prognostic significance of RDW, Cox proportional hazard model and Kaplan-Meier analyses were performed. RESULTS: Of the 203 patients (114 men, 89 women), 28 (13.79%) died within 30 days. The mean RDW was significantly higher in the deceased group than in the survival group (14.54% ± 1.09% vs 13.26% ± 0.57%; P < .001). Multivariate Cox regression analysis showed that elevated RDW (hazard ratio = 2.73, 95% confidence interval = 2.06-3.62, P < .001) was the key predictor of 30-day mortality in older patients undergoing hip fracture surgery. Survival analysis showed that patients with a high RDW had a significantly higher 30-day mortality rate (log-rank test, P < .05). Similar results were observed in the male and female subgroups. CONCLUSION: RDW might be an effective predictor of 30-day mortality in older patients undergoing hip fracture surgery.


Subject(s)
Erythrocyte Indices , Hip Fractures , Aged , Erythrocytes , Female , Hip Fractures/surgery , Humans , Male , Prognosis , Proportional Hazards Models , Prospective Studies , Retrospective Studies
20.
J Bone Miner Metab ; 38(4): 421-431, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31974677

ABSTRACT

INTRODUCTION: Arterial calcification is a major factor for cardiovascular events and is characterized by vascular smooth muscle cells (VSMCs) transformed into osteoblast-like cells. Long non-coding RNAs (lncRNA) were recognized as important regulators of diverse biological processes. Previous studies have demonstrated that lncRNAs could regulate the proliferation and apoptosis of VSMCs. LncRNA-ANCR (Anti-differentiation ncRNA) is an essential mediator governing the differentiation of human osteoblast. However, it is unclear whether ANCR could regulate the osteoblastic differentiation of VSMCs. In this study, we determined the effect of ANCR on VSMCs differentiation and arterial calcification. MATERIALS AND METHODS: Both cellular and mouse model of arterial calcification were, respectively, established to investigate the role of ANCR in the mechanism of arterial calcification. ANCR overexpressing lentivirus were used to investigate the effects of ANCR on the expression of bone proteins and autophagy-related molecules. RESULTS: ANCR could inhibit ß-glycerophosphate (ß-GP)-induced VSMCs osteoblastic differentiation and mineralization due to decreased expressions of Runt-related transcription factor 2, bone morphogenetic protein-2, and formation of mineralized nodule, and attenuate high calcitriol-induced mice model of arterial calcification. Furthermore, ANCR could significantly increase LC3 and autophagy protein 5 expression in ß-GP-stimulated VSMCs, and the effect could be inhibited by 3-methyladenine, a pharmacological inhibitor of autophagy. CONCLUSION: ANCR may inhibit the osteoblastic differentiation of VSMCs and attenuate mice arterial calcification through activating autophagy.


Subject(s)
Protective Agents/metabolism , RNA, Long Noncoding/metabolism , Vascular Calcification/genetics , Animals , Apoptosis/drug effects , Autophagy-Related Protein 5/metabolism , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Calcitriol , Calcium/metabolism , Cell Differentiation/drug effects , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Glycerophosphates/pharmacology , Male , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Osteoblasts/drug effects , Osteoblasts/metabolism , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL