Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Epilepsia ; 65(4): 873-886, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38305763

ABSTRACT

The current pace of development and applications of large language models (LLMs) is unprecedented and will impact future medical care significantly. In this critical review, we provide the background to better understand these novel artificial intelligence (AI) models and how LLMs can be of future use in the daily care of people with epilepsy. Considering the importance of clinical history taking in diagnosing and monitoring epilepsy-combined with the established use of electronic health records-a great potential exists to integrate LLMs in epilepsy care. We present the current available LLM studies in epilepsy. Furthermore, we highlight and compare the most commonly used LLMs and elaborate on how these models can be applied in epilepsy. We further discuss important drawbacks and risks of LLMs, and we provide recommendations for overcoming these limitations.


Subject(s)
Artificial Intelligence , Epilepsy , Humans , Electronic Health Records , Epilepsy/diagnosis , Epilepsy/therapy , Language
2.
Neurology ; 102(9): e209216, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38560817

ABSTRACT

BACKGROUND AND OBJECTIVES: High-frequency oscillations (HFOs; ripples 80-250 Hz; fast ripples [FRs] 250-500 Hz) recorded with intracranial electrodes generated excitement and debate about their potential to localize epileptogenic foci. We performed a systematic review and meta-analysis on the prognostic value of complete resection of the HFOs-area (crHFOs-area) for epilepsy surgical outcome in intracranial EEG (iEEG) accessing multiple subgroups. METHODS: We searched PubMed, Embase, and Web of Science for original research from inception to October 27, 2022. We defined favorable surgical outcome (FSO) as Engel class I, International League Against Epilepsy class 1, or seizure-free status. The prognostic value of crHFOs-area for FSO was assessed by (1) the pooled FSO proportion after crHFOs-area; (2) FSO for crHFOs-area vs without crHFOs-area; and (3) the predictive performance. We defined high combined prognostic value as FSO proportion >80% + FSO crHFOs-area >without crHFOs-area + area under the curve (AUC) >0.75 and examined this for the clinical subgroups (study design, age, diagnostic type, HFOs-identification method, HFOs-rate thresholding, and iEEG state). Temporal lobe epilepsy (TLE) was compared with extra-TLE through dichotomous variable analysis. Individual patient analysis was performed for sex, affected hemisphere, MRI findings, surgery location, and pathology. RESULTS: Of 1,387 studies screened, 31 studies (703 patients) met our eligibility criteria. Twenty-seven studies (602 patients) analyzed FRs and 20 studies (424 patients) ripples. Pooled FSO proportion after crHFOs-area was 81% (95% CI 76%-86%) for FRs and 82% (73%-89%) for ripples. Patients with crHFOs-area achieved more often FSO than those without crHFOs-area (FRs odds ratio [OR] 6.38, 4.03-10.09, p < 0.001; ripples 4.04, 2.32-7.04, p < 0.001). The pooled AUCs were 0.81 (0.77-0.84) for FRs and 0.76 (0.72-0.79) for ripples. Combined prognostic value was high in 10 subgroups: retrospective, children, long-term iEEG, threshold (FRs and ripples) and automated detection and interictal (FRs). FSO after complete resection of FRs-area (crFRs-area) was achieved less often in people with TLE than extra-TLE (OR 0.37, 0.15-0.89, p = 0.006). Individual patient analyses showed that crFRs-area was seen more in patients with FSO with than without MRI lesions (p = 0.02 after multiple correction). DISCUSSION: Complete resection of the brain area with HFOs is associated with good postsurgical outcome. Its prognostic value holds, especially for FRs, for various subgroups. The use of HFOs for extra-TLE patients requires further evidence.


Subject(s)
Electrocorticography , Humans , Prognosis , Electrocorticography/methods , Epilepsy/surgery , Epilepsy/physiopathology , Epilepsy/diagnosis , Brain Waves/physiology
3.
Epilepsia Open ; 9(2): 548-557, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38101810

ABSTRACT

OBJECTIVE: New-onset seizure-like events (SLEs) are common in children, but differentiating between epilepsy and its mimics is challenging. This study provides an overview of the clinical characteristics, diagnoses, and corresponding etiologies of children evaluated at a first seizure clinic (FSC), which will be helpful for all physicians involved in the care of children with SLEs. METHODS: We included 1213 children who were referred to the FSC of a Dutch tertiary children's hospital over a 13-year period and described their clinical characteristics, first routine EEG recording results, and the distribution and specification of their eventual epilepsy and non-epilepsy diagnoses. The time interval to correct diagnosis and the diagnostic accuracy of the FSC were evaluated. RESULTS: "Epilepsy" was eventually diagnosed in 407 children (33.5%), "no epilepsy" in 737 (60.8%), and the diagnosis remained "unclear" in 69 (5.7%). Epileptiform abnormalities were seen in 60.9% of the EEG recordings in the "epilepsy" group, and in 5.7% and 11.6% of the "no epilepsy" and "unclear" group, respectively. Of all children with final "epilepsy" and "no epilepsy" diagnoses, 68.6% already received their diagnosis at FSC consultation, and 2.9% of the children were initially misdiagnosed. The mean time to final diagnosis was 2.0 months, and 91.3% of all children received their final diagnosis within 12 months after the FSC consultation. SIGNIFICANCE: We describe the largest pediatric FSC cohort to date, which can serve as a clinical frame of reference. The experience and expertise built at FSCs will improve and accelerate diagnosis in children with SLEs. PLAIN LANGUAGE SUMMARY: Many children experience events that resemble but not necessarily are seizures. Distinguishing between seizures and seizure mimics is important but challenging. Specialized first-seizure clinics can help with this. Here, we report data from 1213 children who were referred to the first seizure clinic of a Dutch children's hospital. One-third of them were diagnosed with epilepsy. In 68.8% of all children-with and without epilepsy-the diagnosis was made during the first consultation. Less than 3% were misdiagnosed. This study may help physicians in what to expect regarding the diagnoses in children who present with events that resemble seizures.


Subject(s)
Epilepsy , Seizures , Humans , Child , Seizures/diagnosis , Epilepsy/diagnosis , Ambulatory Care Facilities , Referral and Consultation , Hospitals, Pediatric
4.
Nat Commun ; 15(1): 3255, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627406

ABSTRACT

Interictal Epileptiform Discharges (IED) and High Frequency Oscillations (HFO) in intraoperative electrocorticography (ECoG) may guide the surgeon by delineating the epileptogenic zone. We designed a modular spiking neural network (SNN) in a mixed-signal neuromorphic device to process the ECoG in real-time. We exploit the variability of the inhomogeneous silicon neurons to achieve efficient sparse and decorrelated temporal signal encoding. We interface the full-custom SNN device to the BCI2000 real-time framework and configure the setup to detect HFO and IED co-occurring with HFO (IED-HFO). We validate the setup on pre-recorded data and obtain HFO rates that are concordant with a previously validated offline algorithm (Spearman's ρ = 0.75, p = 1e-4), achieving the same postsurgical seizure freedom predictions for all patients. In a remote on-line analysis, intraoperative ECoG recorded in Utrecht was compressed and transferred to Zurich for SNN processing and successful IED-HFO detection in real-time. These results further demonstrate how automated remote real-time detection may enable the use of HFO in clinical practice.


Subject(s)
Electrocorticography , Neural Networks, Computer , Humans , Electrocorticography/methods , Electroencephalography/methods
5.
Neurology ; 102(11): e209430, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38768406

ABSTRACT

BACKGROUND AND OBJECTIVES: Tailoring epilepsy surgery using intraoperative electrocorticography (ioECoG) has been debated, and modest number of epilepsy surgery centers apply this diagnostic method. We assessed the current evidence to use ioECoG-tailored epilepsy surgery for improving postsurgical outcome. METHODS: PubMed and Embase were searched for original studies reporting on ≥10 cases who underwent ioECoG-tailored surgery for epilepsy, with a follow-up of at least 6 months. We used a random-effects model to calculate the overall rate of patients achieving favorable seizure outcome (FSO), defined as Engel class I, ILAE class 1, or seizure-free status. Meta-regression was used to investigate potential sources of heterogeneity. We calculated the odds ratio (OR) for estimating variables on FSO:ioECoG vs non-ioECoG-tailored surgery (if included studies contained patients with non-ioECoG-tailored surgery), ioECoG-tailored epilepsy surgery in children vs adults, temporal (TL) vs extratemporal lobe (eTL), MRI-positive vs MRI-negative, and complete vs incomplete resection of tissue that generated interictal epileptiform discharges (IEDs). A Bayesian network meta-analysis was conducted for underlying pathologies. We assessed the evidence certainty using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE). RESULTS: Eighty-three studies (82 observational studies, 1 trial) comprising 3,631 patients with ioECoG-tailored surgery were included. The overall pooled rate of patients who attained FSO after ioECoG-tailored surgery was 74% (95% CI 71-77) with significant heterogeneity, which was predominantly attributed to pathologies and seizure outcome classifications. Twenty-two studies contained non-ioECoG-tailored surgeries. IoECoG-tailored surgeries reached a higher rate of FSO than non-ioECoG-tailored surgeries (OR 2.10 [95% CI 1.37-3.24]; p < 0.01; very low certainty). Complete resection of tissue that displayed IEDs in ioECoG predicted FSO better compared with incomplete resection (OR 3.04 [1.76-5.25]; p < 0.01; low certainty). We found insignificant difference in FSO after ioECoG-tailored surgery in children vs adults, TL vs eTL, or MRI-positive vs MRI-negative. The network meta-analysis showed that the odds of FSO was lower for malformations of cortical development than for tumors (OR 0.47 95% credible interval 0.25-0.87). DISCUSSION: Although limited by low-quality evidence, our meta-analysis shows a relatively good surgical outcome (74% FSO) after epilepsy surgery with ioECoG, especially in tumors, with better outcome for ioECoG-tailored surgeries in studies describing both and better outcome after complete removal of IED areas.


Subject(s)
Electrocorticography , Epilepsy , Intraoperative Neurophysiological Monitoring , Seizures , Humans , Electrocorticography/methods , Epilepsy/surgery , Epilepsy/diagnostic imaging , Epilepsy/physiopathology , Intraoperative Neurophysiological Monitoring/methods , Seizures/surgery , Seizures/physiopathology , Treatment Outcome , Neurosurgical Procedures/methods
6.
Clin Neurophysiol ; 162: 210-218, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643614

ABSTRACT

OBJECTIVE: Focal cortical dysplasias (FCD) are characterized by distinct interictal spike patterns and high frequency oscillations (HFOs; ripples: 80-250 Hz; fast ripples: 250-500 Hz) in the intra-operative electrocorticogram (ioECoG). We studied the temporal relation between intra-operative spikes and HFOs and their relation to resected tissue in people with FCD with a favorable outcome. METHODS: We included patients who underwent ioECoG-tailored epilepsy surgery with pathology confirmed FCD and long-term Engel 1A outcome. Spikes and HFOs were automatically detected and visually checked in 1-minute pre-resection-ioECoG. Channels covering resected and non-resected tissue were compared using a logistic mixed model, assessing event numbers, co-occurrence ratios, and time-based properties. RESULTS: We found pre-resection spikes, ripples in respectively 21 and 20 out of 22 patients. Channels covering resected tissue showed high numbers of spikes and HFOs, and high ratios of co-occurring events. Spikes, especially with ripples, have a relatively sharp rising flank with a long descending flank and early ripple onset over resected tissue. CONCLUSIONS: A combined analysis of event numbers, ratios, and temporal relationships between spikes and HFOs may aid identifying epileptic tissue in epilepsy surgery. SIGNIFICANCE: This study shows a promising method for clinically relevant properties of events, closely associated with FCD.


Subject(s)
Electrocorticography , Intraoperative Neurophysiological Monitoring , Malformations of Cortical Development , Humans , Female , Male , Adult , Adolescent , Malformations of Cortical Development/physiopathology , Malformations of Cortical Development/surgery , Electrocorticography/methods , Young Adult , Intraoperative Neurophysiological Monitoring/methods , Child , Middle Aged , Epilepsy/physiopathology , Epilepsy/surgery , Epilepsy/diagnosis , Brain Waves/physiology , Child, Preschool , Action Potentials/physiology , Electroencephalography/methods , Focal Cortical Dysplasia
7.
Neurooncol Adv ; 6(1): vdae125, 2024.
Article in English | MEDLINE | ID: mdl-39156617

ABSTRACT

Background: Epileptogenesis and glioma growth have a bidirectional relationship. We hypothesized people with gliomas can benefit from the removal of epileptic tissue and that tumor-related epileptic activity may signify tumor infiltration in peritumoral regions. We investigated whether intraoperative electrocorticography (ioECoG) could improve seizure outcomes in oncological glioma surgery, and vice versa, what epileptic activity (EA) tells about tumor infiltration. Methods: We prospectively included patients who underwent (awake) ioECoG-assisted diffuse-glioma resection through the oncological trajectory. The IoECoG-tailoring strategy relied on ictal and interictal EA (spikes and sharp waves). Brain tissue, where EA was recorded, was assigned for histopathological examination separate from the rest of the tumor. Weibull regression was performed to assess how residual EA and extent of resection (EOR) related to the time-to-seizure recurrence, and we investigated which type of EA predicted tumor infiltration. Results: Fifty-two patients were included. Residual spikes after resection were associated with seizure recurrence in patients with isocitrate dehydrogenase (IDH) mutant astrocytoma or oligodendroglioma (HR = 7.6[1.4-40.0], P-value = .01), independent from the EOR. This was not observed in IDH-wildtype tumors. All tissue samples resected based on interictal spikes were infiltrated by tumor, even if the MRI did not show abnormalities. Conclusions: Complete resection of epileptogenic foci in ioECoG may promote seizure control in IDH-mutant gliomas. The cohort size of IDH-wildtype tumors was too limited to draw definitive conclusions. Interictal spikes may indicate tumor infiltration even when this area appears normal on MRI. Integrating electrophysiology guidance into oncological tumor surgery could contribute to improved seizure outcomes and precise guidance for radical tumor resection.

SELECTION OF CITATIONS
SEARCH DETAIL