ABSTRACT
AIMS: Electro-anatomical mapping may be critical to identify atrial fibrillation (AF) subjects who require substrate modification beyond pulmonary vein isolation (PVI). The objective was to determine correlations between pre-ablation mapping characteristics and 12-month outcomes after a single PVI-only catheter ablation of AF. METHODS AND RESULTS: This study enrolled paroxysmal AF (PAF), early persistent AF (PsAF; 7 days-3 months), and non-early PsAF (>3-12 months) subjects undergoing de novo PVI-only radiofrequency catheter ablation. Sinus rhythm (SR) and AF voltage maps were created with the Advisor HD Grid™ Mapping Catheter, Sensor Enabled™ for each subject, and the presence of low-voltage area (LVA) (low-voltage cutoffs: 0.1-1.5â mV) was investigated. Follow-up visits were at 3, 6, and 12 months, with a 24-h Holter monitor at 12 months. A Cox proportional hazards model identified associations between mapping data and 12-month recurrence after a single PVI procedure. The study enrolled 300 subjects (113 PAF, 86 early PsAF, and 101 non-early PsAF) at 18 centres. At 12 months, 75.5% of subjects were free from AF/atrial flutter (AFL)/atrial tachycardia (AT) recurrence. Univariate analysis found that arrhythmia recurrence did not correlate with AF diagnosis, but LVA was significantly correlated. Low-voltage area (<0.5â mV) >28% of the left atrium in SR [hazard ratio (HR): 4.82, 95% confidence interval (CI): 2.08-11.18; P = 0.0003] and >72% in AF (HR: 5.66, 95% CI: 2.34-13.69; P = 0.0001) was associated with a higher risk of AF/AFL/AT recurrence at 12 months. CONCLUSION: Larger extension of LVA was associated with an increased risk of arrhythmia recurrence. These subjects may benefit from substrate modification beyond PVI.
Subject(s)
Atrial Fibrillation , Atrial Flutter , Catheter Ablation , Pulmonary Veins , Humans , Atrial Fibrillation/diagnosis , Atrial Fibrillation/surgery , Pulmonary Veins/surgery , Heart Rate , Treatment Outcome , Electrophysiologic Techniques, Cardiac , Recurrence , Time Factors , Heart Atria , Atrial Flutter/diagnosis , Atrial Flutter/surgery , Atrial Flutter/etiology , Catheter Ablation/adverse effects , Catheter Ablation/methodsABSTRACT
It has been hypothesized that early and rapid filtration of blood from cerebrospinal fluid (CSF) in postsubarachnoid hemorrhage patients may reduce hospital stay and related adverse events. In this study, we formulated a subject-specific computational fluid dynamics (CFD) model to parametrically investigate the impact of a novel dual-lumen catheter-based CSF filtration system, the Neurapheresis™ system (Minnetronix Neuro, Inc., St. Paul, MN), on intrathecal CSF dynamics. The operating principle of this system is to remove CSF from one location along the spine (aspiration port), externally filter the CSF routing the retentate to a waste bag, and return permeate (uncontaminated CSF) to another location along the spine (return port). The CFD model allowed parametric simulation of how the Neurapheresis system impacts intrathecal CSF velocities and steady-steady streaming under various Neurapheresis flow settings ranging from 0.5 to 2.0 ml/min and with a constant retentate removal rate of 0.2 ml/min simulation of the Neurapheresis system were compared to a lumbar drain simulation with a typical CSF removal rate setting of 0.2 ml/min. Results showed that the Neurapheresis system at a maximum flow of 2.0 ml/min increased average steady streaming CSF velocity 2× in comparison to lumbar drain (0.190 ± 0.133 versus 0.093 ± 0.107 mm/s, respectively). This affect was localized to the region within the Neurapheresis flow loop. The mean velocities introduced by the flow loop were relatively small in comparison to normal cardiac-induced CSF velocities.
Subject(s)
Computer Simulation , Hydrodynamics , Models, Biological , SpineABSTRACT
BACKGROUND: Blood removal from cerebrospinal fluid (CSF) in post-subarachnoid hemorrhage patients may reduce the risk of related secondary brain injury. We formulated a computational fluid dynamics (CFD) model to investigate the impact of a dual-lumen catheter-based CSF filtration system, called Neurapheresis™ therapy, on blood removal from CSF compared to lumbar drain. METHODS: A subject-specific multiphase CFD model of CSF system-wide solute transport was constructed based on MRI measurements. The Neurapheresis catheter geometry was added to the model within the spinal subarachnoid space (SAS). Neurapheresis flow aspiration and return rate was 2.0 and 1.8 mL/min, versus 0.2 mL/min drainage for lumbar drain. Blood was modeled as a bulk fluid phase within CSF with a 10% initial tracer concentration and identical viscosity and density as CSF. Subject-specific oscillatory CSF flow was applied at the model inlet. The dura and spinal cord geometry were considered to be stationary. Spatial-temporal tracer concentration was quantified based on time-average steady-streaming velocities throughout the domain under Neurapheresis therapy and lumbar drain. To help verify CFD results, an optically clear in vitro CSF model was constructed with fluorescein used as a blood surrogate. Quantitative comparison of numerical and in vitro results was performed by linear regression of spatial-temporal tracer concentration over 24-h. RESULTS: After 24-h, tracer concentration was reduced to 4.9% under Neurapheresis therapy compared to 6.5% under lumbar drain. Tracer clearance was most rapid between the catheter aspiration and return ports. Neurapheresis therapy was found to have a greater impact on steady-streaming compared to lumbar drain. Steady-streaming in the cranial SAS was ~ 50× smaller than in the spinal SAS for both cases. CFD results were strongly correlated with the in vitro spatial-temporal tracer concentration under Neurapheresis therapy (R2 = 0.89 with + 2.13% and - 1.93% tracer concentration confidence interval). CONCLUSION: A subject-specific CFD model of CSF system-wide solute transport was used to investigate the impact of Neurapheresis therapy on tracer removal from CSF compared to lumbar drain over a 24-h period. Neurapheresis therapy was found to substantially increase tracer clearance compared to lumbar drain. The multiphase CFD results were verified by in vitro fluorescein tracer experiments.