Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Small ; : e2403736, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990899

ABSTRACT

Transition metal selenides (TMSs) are receiving considerable interest as improved anode materials for sodium-ion batteries (SIBs) and lithium-ion batteries (LIBs) due to their considerable theoretical capacity and excellent redox reversibility. Herein, ZIF-12 (zeolitic imidazolate framework) structure is used for the synthesis of Cu2Se/Co3Se4@NPC anode material by pyrolysis of ZIF-12/Se mixture. When Cu2Se/Co3Se4@NPC composite is utilized as an anode electrode material in LIB and SIB half cells, the material demonstrates excellent electrochemical performance and remarkable cycle stability with retaining high capacities. In LIB and SIB half cells, the Cu2Se/Co3Se4@NPC anode material shows the ultralong lifespan at 2000 mAg-1, retaining a capacity of 543 mAhg-1 after 750 cycles, and retaining a capacity of 251 mAhg-1 after 200 cycles at 100 mAg-1, respectively. The porous structure of the Cu2Se/Co3Se4@NPC anode material can not only effectively tolerate the volume expansion of the electrode during discharging and charging, but also facilitate the penetration of electrolyte and efficiently prevents the clustering of active particles. In situ X-ray difraction (XRD) analysis results reveal the high potential of Cu2Se/Co3Se4@NPC composite in building efficient LIBs and SIBs due to reversible conversion reactions of Cu2Se/Co3Se4@NPC for lithium-ion and sodium-ion storage.

2.
Inorg Chem ; 63(37): 17166-17175, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39221868

ABSTRACT

Recycling spent lithium-ion batteries (LIBs) in a green and economical way is vital for maintaining the sustainability of the LIB industry. However, given the low content of high-value components in olivine-type lithium iron phosphate (LFP), traditional metallurgical processes are economically unfeasible for recycling due to high chemical/energy consumption and labor-intensive procedures. This study proposes a facile electrochemistry strategy to directly regenerate the spent LFP material by an electrically driven lithiation process as a spent LFP slurry (200 g/L) rather than as electrodes. Minimal energy and chemical consumption are achieved by enabling the healing of spent LFP without destroying the original olivine-type crystal structure. The proposed method utilizes mild healing conditions (25 °C for 2 h) and LiCl solution as the only reagent in the regeneration process, significantly lowering the expenses associated with producing cathode electrodes. The electrochemical performance of the regenerated LFP have been dramatically recovered after regeneration, exhibiting a capacity of 151.5 mA h g-1 at 0.1 C and 96.6% capacity retention over 400 cycles at 1 C. This approach demonstrates a high processing capability and offers considerable economic and environmental benefits, making it an eco-friendly option and supporting the sustainable development of the LFP industry.

3.
Angew Chem Int Ed Engl ; 63(36): e202410016, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38896116

ABSTRACT

Garnet solid-state electrolyte Li6.5La3Zr1.5Ta0.5O12 (LLZTO) holds significant promise. However, the practical utilization has been seriously impeded by the poor contact of Li|garnet and electron leakage. Herein, one new type of garnet-based solid-state battery is proposed with high performance through the disparity in interfacial energy, induced by the reaction between trace fluorinated carbon dots (FCDs) and Li. The work of adhesion of Li|garnet is increased by the acquired Li-FCD composite, which facilitates an intimate Li|garnet interface with the promoted uniform Li+ deposition, revealed by density functional theory (DFT) calculations. It is further validated that a concentrated C-Li2O-LiF component at the Li|garnet interface is spontaneously constructed, due to the significant disparity in interfacial energy between C-Li2O-LiF|LLZTO and C-Li2O-LiF|Li. Furthermore, The electron transport and Li dendrites penetration are effectively hindered by the formed Li2O and LiF. The Li-FCD|LLZTO|Li-FCD symmetrical cells demonstrate stable cycling performance for over 3000 hours at 0.3 mA cm-2 and 800 hours at 0.5 mA cm-2. Furthermore, the LFP|garnet|Li-FCD full cell exhibits remarkable cycling performance (91.6 % capacity retention after 500 cycles at 1 C). Our research has revealed a novel approach to establish a dendrite-free Li|garnet interface, laying the groundwork for future advancements in garnet-based solid-state batteries.

4.
Angew Chem Int Ed Engl ; 63(41): e202409044, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39005168

ABSTRACT

The practical application of solid polymer electrolyte is hindered by the small transference number of Li+, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li+ in the electrolyte. Therefore, flower-like SnS2-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS2 have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in situ formed Li2S/Li3N at the interface of Li metal and electrolyte facilitate the fast Li+ diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.

5.
Angew Chem Int Ed Engl ; 63(40): e202410420, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38961660

ABSTRACT

The structural failure of Na2Mn[Fe(CN)6] could not be alleviated with traditional modification strategies through the adjustable composition property of Prussian blue analogues (PBAs), considering that the accumulation and release of stress derived from the MnN6 octahedrons are unilaterally restrained. Herein, a novel application of adjustable composition property, through constructing a coordination competition relationship between chelators and [Fe(CN)6]4- to directionally tune the enrichment of elements, is proposed to restrain structural degradation and induce unconventional energy coupling phenomenon. The non-uniform distribution of elements at the M1 site of PBAs (NFM-PB) is manipulated by the sequentially precipitated Ni, Fe, and Mn according to the Irving-William order. Electrochemically active Fe is operated to accompany Mn, and zero-strain Ni is modulated to enrich at the surface, synergistically mitigating with the enrichment and release of stress and then significantly improving the structural stability. Furthermore, unconventional energy coupling effect, a fusion of the electrochemical behavior between FeLS and MnHS, is triggered by the confined element distribution, leading to the enhanced electrochemical stability and anti-polarization ability. Consequently, the NFM-PB demonstrates superior rate performance and cycling stability. These findings further exploit potentialities of the adjustable composition property and provide new insights into the component design engineering for advanced PBAs.

6.
Small ; 19(41): e2300256, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37330644

ABSTRACT

The high-throughput scalable production of low-cost and high-performance electrode materials that work well under high power densities required in industrial application is full of challenges for the large-scale implementation of electrochemical technologies. Here, motivated by theoretical calculation that Mo-S-C heterojunction and sulfur vacancies can reduce the energy band gap, decrease the migration energy barrier, and improve the mechanical stability of MoS2 , the scalable preparation of inexpensive MoS2-x @CN is contrived by employing natural molybdenite as precursor, which is characteristic of high efficiency in synthesis process and energy conservation and the calculated costs are four orders of magnitude lower than MoS2 /C in previous work. More importantly, MoS2- x @CN electrode is endowed with impressive rate capability even at 5 A g-1 , and ultrastable cycling stability during almost 5000 cycles, which far outperform chemosynthesis MoS2 materials. Obtaining the full SIC cell assembled by MoS2- x @CN anode and carbon cathode, the energy/power output is high up to 265.3 W h kg-1 at 250 W kg-1 . These advantages indicate the huge potentials of the designed MoS2- x @CN and of mineral-based cost-effective and abundant resources as anode materials in high-performance AICs.

7.
Small ; 19(39): e2303268, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37226370

ABSTRACT

Rechargeable aqueous zinc-ion batteries (AZIBs) are among the most promising candidates for next-generation energy-storage devices. However, the large voltage polarisation and infamous dendrite growth hinder the practical application of AZIBs owing to their complex interfacial electrochemical environment. In this study, a hydrophobic zinc chelate-capped nano-silver (HZC-Ag) dual interphase is fabricated on the zinc anode surface using an emulsion-replacement strategy. The multifunctional HZC-Ag layer remodels the local electrochemical environment by facilitating the pre-enrichment and de-solvation of zinc ions and inducing homogeneous zinc nucleation, thus resulting in reversible dendrite-free zinc anodes. The zinc deposition mechanism on the HZC-Ag interphase is elucidated by density functional theory (DFT) calculations, dual-field simulations, and in situ synchrotron X-ray radiation imaging. The HZC-Ag@Zn anode exhibited superior dendrite-free zinc stripping/plating performance and an excellent lifespan of >2000 h with ultra-low polarisation of ≈17 mV at 0.5 mA cm-2 . Full cells coupled with a MnO2 cathode showed significant self-discharge inhibition, excellent rate performance, and improved cycling stability for >1000 cycles. Therefore, this multifunctional dual interphase may contribute to the design and development of dendrite-free anodes for high-performance aqueous metal-based batteries.

8.
Small ; 19(26): e2300510, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36929673

ABSTRACT

It is urgent to develop high-temperature dielectrics with high energy density and high energy efficiency for next-generation capacitor demands. Metal-organic frameworks (MOFs) have been widely used due to their structural diversity and functionally adaptable properties. Doping of metal nodes in MOFs is an effective strategy to change the band gap and band edge positions of the original MOFs, which helps to improve their ability to bind charges as traps. In this work, the incorporation of ultralow loading (<1.5 wt%) of novel bimetallic MOFs (ZIF 8-67) into the polyetherimide (PEI) polymer matrix is exhibited. With the addition of ZIF 8-67, the breakdown strength and energy storage capacity of ZIF 8-67/PEI nanocomposites are significantly improved, especially at high temperatures (200 °C). For example, the energy densitiy of the 0.5 wt% ZIF 8-67/PEI nanocomposite is up to 2.96 J cm-3 , with an efficiency (η) > 90% at 150 °C. At 200 °C, the discharge energy density of 0.25 wt% ZIF 8-67/PEI nanocomposites can still reach 1.84 J cm-3 with a η > 90%, which is nine times higher than that of pure PEI (0.21 J cm-3 ) under the same conditions, and it is the largest improvement compared with the previous reports.

9.
Small ; 19(33): e2301275, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37081376

ABSTRACT

Solid-state polymer electrolytes are highly anticipated for next generation lithium ion batteries with enhanced safety and energy density. However, a major disadvantage of polymer electrolytes is their low ionic conductivity at room temperature. In order to enhance the ionic conductivity, here, graphene quantum dots (GQDs) are employed to improve the poly (ethylene oxide) (PEO) based electrolyte. Owing to the increased amorphous areas of PEO and mobility of Li+ , GQDs modified composite polymer electrolytes achieved high ionic conductivity and favorable lithium ion transference numbers. Significantly, the abundant hydroxyl groups and amino groups originated from GQDs can serve as Lewis base sites and interact with lithium ions, thus promoting the dissociation of lithium salts and providing more ion pathways. Moreover, lithium dendrite is suppressed, associated with high transference number, enhanced mechanical properties and steady interface stability. It is further observed that all solid-state lithium batteries assembled with GQDs modified composite polymer electrolytes display excellent rate performance and cycling stability.

10.
Small ; : e2307225, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054760

ABSTRACT

Ni/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3 Ni0.2 Mn0.8 O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3 Ni0.21 Mn0.74 Ga0.05 O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries.

11.
Small ; 19(15): e2207975, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36631278

ABSTRACT

Transition metal selenides anodes with fast reaction kinetics and high theoretical specific capacity are expected to solve mismatched kinetics between cathode and anode in Li-ion capacitors. However, transition metal selenides face great challenges in the dissolution and shuttle problem of lithium selenides, which is the same as Li-Se batteries. Herein, inspired by the density functional theory calculations, heterogeneous can enhance the adsorption of Li2 Se relative to single component selenide electrodes, thus inhibiting the dissolution and shuttle effect of Li2 Se. A heterostructure material (denoted as CoSe2 /SnSe) with the ability to evolve continuously (CoSe2 /SnSe→Co/Sn→Co/Li13 Sn5 ) is successfully designed by employing CoSnO3 -MOF as a precursor. Impressively, CoSe2 /SnSe heterostructure material delivers the ultrahigh reversible specific capacity of 510 mAh g-1 after 1000 cycles at the high current density of 4 A g-1 . In situ XRD reveals the continuous evolution of the interface based on the transformation and alloying reactions during the charging and discharging process. Visualizations of in situ disassembly experiments demonstrate that the continuously evolving interface inhibits the shuttle of Li2 Se. This research proposes an innovative approach to inhibit the dissolution and shuttling of discharge intermediates (Li2 Se) of metal selenides, which is expected to be applied to metal sulfides or Li-Se and Li-S energy storage systems.

12.
Inorg Chem ; 62(11): 4514-4524, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36872651

ABSTRACT

Nickel-rich layered electrode material has been attracting significant attention owing to its high specific capacity as a cathode for lithium-ion batteries. Generally, the high-nickel ternary precursors obtained by traditional coprecipitation methods are micron-scale. In this work, the submicrometer single-crystal LiNi0.8Co0.1Mn0.1O2 (NCM) cathode is efficiently prepared by electrochemically anodic oxidation followed by a molten-salt-assisted reaction without the need of extreme alkaline environments and complex processes. More importantly, when prepared under optimal voltage (10 V), single-crystal NCM exhibits a moderate particle size (∼250 nm) and strong metal-oxygen bonds due to reasonable and balanced crystal nucleation/growth rate, which are conducive to greatly enhancing the Li+ diffusion kinetics and structure stability. Given that a good discharge capacity of 205.7 mAh g-1 at 0.1 C (1 C = 200 mAh g-1) and a superior capacity retention of 87.7% after 180 cycles at 1 C are obtained based on the NCM electrode, this strategy is effective and flexible for developing a submicrometer single-crystal nickel-rich layered cathode. Besides, it can be adopted to elevate the performance and utilization of nickel-rich cathode materials.

13.
Inorg Chem ; 62(23): 9099-9110, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37227733

ABSTRACT

Na4Fe3(PO4)2(P2O7) (NFPP) is an attractive candidate for Na+ batteries (SIBs) and Li+ batteries (LIBs). However, the real implementation of NFPP has been critically restrained by the inferior intrinsic electronic conductivity. Herein, in situ carbon-coated mesoporous NFPP, obtained via freeze drying and heat treatment, demonstrates highly reversible insertion/extraction of Na+/Li+. Mechanically, the electronic transmission and structural stabilities of NFPP are significantly enhanced by the graphitized carbon coating layer. Chemically, the porous nanosized structure shortens Na+/Li+ diffusion paths and increases the contact area between the electrolyte and NFPP, ultimately rendering fast ion diffusion. Greatly, long-lasting cyclability (88.5% capacity retention for over 5000 cycles), decent thermal stability at 60 °C, and impressive electrochemical performances are demonstrated in LIBs. The insertion/extraction mechanisms of NFPP in both SIBs and LIBs are systematically investigated, confirming its small volume expansion and high reversibility. The superior electrochemical performances and the insertion/extraction mechanism investigation confirm the feasibility of utilizing NFPP as a cathode material for Na+/Li+ batteries.

14.
Angew Chem Int Ed Engl ; 62(38): e202309601, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37548132

ABSTRACT

High-voltage aqueous rechargeable energy storage devices with safety and high specific energy are hopeful candidates for the future energy storage system. However, the electrochemical stability window of aqueous electrolytes is a great challenge. Herein, inspired by density functional theory (DFT), polyethylene glycol (PEG) can interact strongly with water molecules, effectively reconstructing the hydrogen bond network. In addition, N, N-dimethylformamide (DMF) can coordinate with Zn2+ , assisting in the rapid desolvation of Zn2+ and stable plating/stripping process. Remarkably, by introducing PEG400 and DMF as co-solvents into the electrolyte, a wide electrochemical window of 4.27 V can be achieved. The shift in spectra indicate the transformation in the number and strength of hydrogen bonds, verifying the reconstruction of hydrogen bond network, which can largely inhibit the activity of water molecule, according well with the molecular dynamics simulations (MD) and online electrochemical mass spectroscopy (OEMS). Based on this electrolyte, symmetric Zn cells survived up to 5000 h at 1 mA cm-2 , and high voltage aqueous zinc ion supercapacitors assembled with Zn anode and activated carbon cathode achieved 800 cycles at 0.1 A g-1 . This work provides a feasible approach for constructing high-voltage alkali metal ion supercapacitors through reconstruction strategy of hydrogen bond network.

15.
Small ; 18(26): e2202134, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35638480

ABSTRACT

2D layered Sn-based materials have attracted enormous attention due to their remarkable performance in sodium-ion batteries. Nevertheless, this promising candidate involves a complex Na+ -storage process with multistep conversion-alloying reactions, which induces the uneven dispersion of heterogeneous intermediate accompanied by severe agglomeration of metallic Sn0 , inescapably resulting in poor reaction reversibility with sluggish rate capability and inferior cyclic lifespan. Herein, a delicately layered heterostructure SnSSe/C consisting of defect-rich SnSSe and graphene is designed and successfully achieved via a facile hydrothermal process. The equal anionic substitution of Se in SnSSe crystal can trigger numerous defects, which can not only facilitate Na+ diffusion but also accelerate the nucleation process by inducing quantum-dot-level uniform distribution of heterogeneous intermediates, Na2 Se/Na2 S and Sn0 . Concurrently, in situ formed uniform Na2 Se/Na2 S grain boundaries confined by this unique layered heterostructure may effectively suppress the agglomeration of metallic Sn0 nanograins and boost the reversibility of conversion-alloying reaction. As a result, the SnSSe/C displays significant improvement in Na-storage performance, in terms of remarkable rate capability and ultralong cycling lifespan. This work, focusing on controlling intermediate distribution, provides an effective strategy to boost reaction reversibility, which can be wildly employed in conversion-based electrodes for energy storage regions.

16.
Anal Bioanal Chem ; 414(20): 6167-6175, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35767031

ABSTRACT

The accurate and sensitive detection of survivin mRNA is of great significance for cancer diagnosis and treatment. However, limited by the low-abundance mRNA in live cells, most strategies of survivin mRNA detection that were one-to-one signal-triggered model (one target triggered one signal) were inapplicable in practice. Here, we reported a binding-induced DNAzyme motor triggered by the survivin mRNA, which was a one-to-more signal-triggered model (one target triggered more signals), amplifying the detection signal and enhancing the sensitivity. The nanomotor is constructed by assembling several DNAzyme motor strands silenced by the blocker strands, and dozens of FAM-labeled substrate strands on a single gold nanoparticle (AuNP), forming three-dimensional DNA tracks. Through building the survivin mRNA bridge between the blocker and the DNAzyme motor strand, the binding-induced DNA nanomotor could be triggered by survivin mRNA. The operation of the DNAzyme motor was self-powered. And each walking step of the DNAzyme motor was fueled by DNAzyme-catalyzed substrate cleavage, along with the cleavage of the fluorescent molecule, resulting in autonomous and progressive walking along the AuNP-based tracks, and the fluorescence increase. The DNAzyme motor exhibited excellent sensitivity and remarkable specificity for survivin mRNA, providing the potential for cell image.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Metal Nanoparticles , Biosensing Techniques/methods , DNA/chemistry , DNA, Catalytic/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , RNA, Messenger , Survivin
17.
Small ; 17(40): e2102091, 2021 10.
Article in English | MEDLINE | ID: mdl-34318998

ABSTRACT

Carbon dots (CDs) as new nanomaterials have attracted much attention in recent years due to their unique characteristics. Notably, structure and interface modification (carbon core, edge, defects, and functional groups) of CDs have been considered as valid methods to regulate their properties, which contain electron transfer effect, electrochemical activity, fluorescence luminescent, and so on. Additionally, CDs with ultrasmall size, excellent dispersibility, high specific surface area, and abundant functional groups can guarantee positive and extraordinary effects in electrical energy storage and conversion. Therefore, CDs are used to couple with other materials by constructing a special interface structure to enhance their properties. Here, diverse structural and interfacial modifications of CDs with various heteroatoms and synergy effects are systematically analyzed. And not only several main syntheses of CDs-based composites (CDs/X) are summarized but also the merit and demerit of CDs/X in electrical energy storage are discussed. Finally, the applications of CDs/X in energy storage devices (supercapacitors, batteries) and electrocatalysts for practical applications are discussed. This review mainly provides a comprehensive summary and future prospect for synthesis, modification, and electrochemical applications of CDs.


Subject(s)
Nanostructures , Quantum Dots , Carbon , Fluorescence
18.
Small ; 17(39): e2102978, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34416079

ABSTRACT

Solid composite electrolyte-based Li battery is viewed as one of the most competitive system for the next generation batteries; however, it is still restricted by sluggish ion diffusion. Fast ion transport is a characteristic of the polyethylene oxide (PEO) amorphous phase, and the mobility of Li+ is restrained by the coordination interaction within PEO and Li+ . Herein, the design of applying functionalized carbon dots (CDs) with abundant surface features as fillers is proposed. High ionic conductivity is achieved in the CD-based composite electrolytes resulting from enhanced ion migration ability of polymer segments and mobility of Li+ . Specially, the optimum effect with nitrogen and sulfur co-doped carbon dots (NS-CD) is a consequence of strong interaction between edge-nitrogen/sulfur in NS-CD and Li+ . Solid-state nuclear magnetic resonance results confirm that more mobile Li+ is generated. Moreover, it is observed that lithium dendrite is suppressed compared to PEO electrolyte associated with reinforced mechanical properties and high transference number. The corresponding all-solid-state batteries, with the cathode of LiFePO4 or high voltage NCM523, exhibit long cycling life and excellent rate performances. It is a novel strategy to achieve high ionic conductivity composite electrolyte with uniform lithium deposition and provides a new direction to the mechanism of fast Li+ movement.

19.
Small ; 17(35): e2101058, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34242471

ABSTRACT

The sodium-ion battery (SIB) has attracted ever growing attention as a promising alternative of the lithium-ion battery (LIB). Constructing appropriate anode materials is critical for speeding up the application of SIB. This review aims at guiding anode design from the material's perspective, and specifically focusing on solid solution metal chalcogenide anode. The sodium ion storage mechanisms of a solid solution metal chalcogenide anode is overviewed on basis of the elements it is composed of, and discusses how the solid solution character alters the electrochemical performances through diffusion and surface-controlled processes. In addition, by classifying solid solution metal chalcogenide as cation and anion, their recent applications are updated, and understanding the roles of guest elements in improving the electrochemical behaviors of a solid solution metal chalcogenide is carried out. After that, discussion of possible strategies to further optimize these anode materials in the future, flowing from crystal structure design to morphology control and finally to the intimacy improvement between conductive matrix and solid solution metal chalcogenide are also provided.

20.
Chemistry ; 27(65): 16082-16092, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34374996

ABSTRACT

Nowadays sodium-based energy storage systems (Na-based ESSs) have been widely researched as it possesses the possibility to replace traditional energy storage media to become next generation energy storage system. However, due to the irreversible loss of sodium ions in the first cycle, development of Na-based ESSs is limited. Presodiation, as a strategy of adding excess sodium ions to the system in advance, accomplishes the enhancement of electrochemical performance. In this minireview, different presodiation strategies applied in sodium-based energy storage systems will be summarized in detail, their functions and corresponding mechanisms will be discussed as well. Furthermore, the current novel application of presodiation method in other aspects of Na-based ESSs will be mentioned additionally. At last, in the view of present research status of presodiation, issues that can be mitigated are put forward and guidelines are given on how to deliberate in-depth presodiation technology in the future, dedicating to promote the further development of Na-based ESSs.

SELECTION OF CITATIONS
SEARCH DETAIL