Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Water Res ; 251: 121190, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38281336

ABSTRACT

We lack a clear understanding of how anthropogenic pressures, exemplified by effluent discharge from wastewater treatment plants, destabilize microbial communities in the hyporheic zone (HZ) of receiving rivers. In this study, the spatiotemporal characteristics of hydrological parameters, and the physicochemical properties of surface and subsurface water in a representative effluent-dominated river were monitored. Sequencing of 16S rRNA amplicons and metagenomes revealed the microbial community structure in the HZ of both effluent discharge area and downstream region. The keystone taxa (taxa vital in determining the composition of each microbial cluster) and the keystone functions they controlled were subsequently identified. Effluent discharge amplified the depth of the oxic/suboxic zone and the hyporheic exchange fluxes in the effluent discharge area, which was 50-120% and 40-300% higher than in the downstream region, respectively. Microbial community structure pattern analysis demonstrated an enhancement in the rate of dispersal, an increase in microbial diversity, and an improved community network complexity in the effluent discharge area. By contrast, the number of keystone taxa in the effluent discharge area was 50-70% lower than that of the downstream region, resulting in reduced community network stability and functionality. The keystone taxa controlling metabolic functions in the networks categorized to effluent discharge area were comprised of more genera related to nitrogen and sulfur cycling, e.g., Dechloromonas, Desulfobacter, Flavobacterium, Nitrosomonas, etc., highlighting a research need in monitoring species associated with nutrient element cycling in the HZ of receiving waterbodies. The results showed that the keystone taxa could contribute positively to network stability, which was negatively correlated to hyporheic exchange fluxes and redox gradients. This study provides valuable insights that will improve our understanding of how river ecosystems respond to changes in anthropogenic pressures.


Subject(s)
Microbiota , RNA, Ribosomal, 16S/genetics , Oxidation-Reduction , Rivers/chemistry
2.
Sci Total Environ ; 915: 170070, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38218484

ABSTRACT

The coupled N and S cycling in variable redox gradients in the hyporheic zone (HZ) of the rivers receiving effluents from wastewater treatment plants is unclear. Using two representative effluent-dominated rivers as model systems, a metagenome approach was employed to explore the spatiotemporal redox zonation of the HZ and the N/S cycling processes within the system. The results manifested that nitrate reduction represented the fundamental nitrogen pathway in the HZ. Interestingly, DNRA coupled with sulfur reduction, and denitrification coupled with sulfur oxidation were respectively abundant in the oxic and anoxic zone. Lower nitrate concentration (0-2.72 mg-N/L) and more abundant genes involved in denitrification (napB, NarGHI) and sulfur oxidation (sseA, glpE) were detected in the anoxic zone. Contrarily, the nitrate concentration (0.07-4.87 mg-N/L) and the abundance of genes involved in sulfur reduction (ttrB, sudA) and DNRA (nirBD) were observed more abundant in the oxic zone. Therefore, the results verified the oxygen-limited condition did not suppress but rather facilitated the denitrification process in the presence of active S cycling. The high relative abundances of nosZ gene encoding sequence (3-5 % relative to all nitrogen-cycling processes) in both the effluent-discharging area and downstream area highly confirmed that HZ was capable of alleviating the N2O emission in the region. The functional keystone taxa were revealed through co-occurrence network analysis. The structural equation model shows that the genes of N/S cycling were positively impacted by functional keystone taxa, especially the N cycling genes. Functional keystone taxa were proven driven by the redox gradient, demonstrating their positive roles in mediating N/S cycling processes. The promoting effect on nitrate reduction coupled with sulfur cycling was clarified when redox conditions oscillated, providing a new perspective on mitigating nitrogen pollution and greenhouse gas emissions in effluent-receiving rivers.


Subject(s)
Denitrification , Nitrates , Nitrates/metabolism , Nitrogen/metabolism , Organic Chemicals , Sulfur/metabolism , Oxidation-Reduction
3.
Environ Pollut ; 345: 123461, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38286261

ABSTRACT

The increase in effluent discharge from wastewater treatment plants (WWTPs) into urban rivers has raised concerns about the potential effects on pathogen risks. This study utilized metagenomic sequencing combined with flow cytometry to analyze pathogen concentrations and antibiotic resistance in a typical effluent-receiving river. Quantitative microbial risk assessment (QMRA) was employed to assess the microbial risks of pathogens. The results indicated obvious spatial-temporal differences (i.e., summer vs. winter and effluent vs. river) in microbial composition. Microcystis emerged as a crucial species contributing to these variations. Pathogen concentrations were found to be higher in the river than in the effluent, with the winter exhibiting higher concentrations compared to the summer. The effluent discharge slightly increased the pathogen concentrations in the river in summer but dramatically reduced them in winter. The combined effects of cyanobacterial bloom and high temperature were considered key factors suppressing pathogen concentrations in summer. Moreover, the prevalence of antibiotic resistance of pathogens in the river was inferior to that in the effluent, with higher levels in winter than in summer. Three high-concentration pathogens (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) were selected for QMRA. The results showed that the risks of pathogens exceeded the recommended threshold value. Escherichia coli posed the highest risks. And the fishing scenario posed significantly higher risks than the walking scenario. Importantly, the effluent discharge helped reduce the microbial risks in the receiving river in winter. The study contributes to the management and decision-making regarding microbial risks in the effluent-receiving river.


Subject(s)
Wastewater , Water Purification , Rivers/microbiology , Drug Resistance, Microbial , Escherichia coli , Anti-Bacterial Agents
SELECTION OF CITATIONS
SEARCH DETAIL