Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cell ; 165(4): 867-81, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27133164

ABSTRACT

Fanconi anemia (FA) pathway genes are important tumor suppressors whose best-characterized function is repair of damaged nuclear DNA. Here, we describe an essential role for FA genes in two forms of selective autophagy. Genetic deletion of Fancc blocks the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral encephalitis. Fanconi anemia complementation group C (FANCC) protein interacts with Parkin, is required in vitro and in vivo for clearance of damaged mitochondria, and decreases mitochondrial reactive oxygen species (ROS) production and inflammasome activation. The mitophagy function of FANCC is genetically distinct from its role in genomic DNA damage repair. Moreover, additional genes in the FA pathway, including FANCA, FANCF, FANCL, FANCD2, BRCA1, and BRCA2, are required for mitophagy. Thus, members of the FA pathway represent a previously undescribed class of selective autophagy genes that function in immunity and organellar homeostasis. These findings have implications for understanding the pathogenesis of FA and cancers associated with mutations in FA genes.


Subject(s)
Fanconi Anemia Complementation Group C Protein/metabolism , Animals , Autophagy , Embryo, Mammalian/cytology , Fanconi Anemia Complementation Group C Protein/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , Fibroblasts/metabolism , HeLa Cells , Herpesvirus 1, Human/metabolism , Humans , Inflammasomes/metabolism , Mice , Mitophagy , Reactive Oxygen Species/metabolism , Sindbis Virus/metabolism
2.
Cell ; 154(6): 1269-84, 2013 Sep 12.
Article in English | MEDLINE | ID: mdl-24034250

ABSTRACT

Cell surface growth factor receptors couple environmental cues to the regulation of cytoplasmic homeostatic processes, including autophagy, and aberrant activation of such receptors is a common feature of human malignancies. Here, we defined the molecular basis by which the epidermal growth factor receptor (EGFR) tyrosine kinase regulates autophagy. Active EGFR binds the autophagy protein Beclin 1, leading to its multisite tyrosine phosphorylation, enhanced binding to inhibitors, and decreased Beclin 1-associated VPS34 kinase activity. EGFR tyrosine kinase inhibitor (TKI) therapy disrupts Beclin 1 tyrosine phosphorylation and binding to its inhibitors and restores autophagy in non-small-cell lung carcinoma (NSCLC) cells with a TKI-sensitive EGFR mutation. In NSCLC tumor xenografts, the expression of a tyrosine phosphomimetic Beclin 1 mutant leads to reduced autophagy, enhanced tumor growth, tumor dedifferentiation, and resistance to TKI therapy. Thus, oncogenic receptor tyrosine kinases directly regulate the core autophagy machinery, which may contribute to tumor progression and chemoresistance.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Autophagy , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Membrane Proteins/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Beclin-1 , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , ErbB Receptors/genetics , Heterografts , Humans , Lung Neoplasms/drug therapy , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Phosphorylation
3.
Cell ; 154(5): 1085-1099, 2013 Aug 29.
Article in English | MEDLINE | ID: mdl-23954414

ABSTRACT

The molecular mechanism of autophagy and its relationship to other lysosomal degradation pathways remain incompletely understood. Here, we identified a previously uncharacterized mammalian-specific protein, Beclin 2, which, like Beclin 1, functions in autophagy and interacts with class III PI3K complex components and Bcl-2. However, Beclin 2, but not Beclin 1, functions in an additional lysosomal degradation pathway. Beclin 2 is required for ligand-induced endolysosomal degradation of several G protein-coupled receptors (GPCRs) through its interaction with GASP1. Beclin 2 homozygous knockout mice have decreased embryonic viability, and heterozygous knockout mice have defective autophagy, increased levels of brain cannabinoid 1 receptor, elevated food intake, and obesity and insulin resistance. Our findings identify Beclin 2 as a converging regulator of autophagy and GPCR turnover and highlight the functional and mechanistic diversity of Beclin family members in autophagy, endolysosomal trafficking, and metabolism.


Subject(s)
Autophagy , Intracellular Signaling Peptides and Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Beclin-1 , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Male , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , Obesity/metabolism , Sequence Alignment
4.
Nature ; 589(7842): 456-461, 2021 01.
Article in English | MEDLINE | ID: mdl-33328639

ABSTRACT

Autophagy, a process of degradation that occurs via the lysosomal pathway, has an essential role in multiple aspects of immunity, including immune system development, regulation of innate and adaptive immune and inflammatory responses, selective degradation of intracellular microorganisms, and host protection against infectious diseases1,2. Autophagy is known to be induced by stimuli such as nutrient deprivation and suppression of mTOR, but little is known about how autophagosomal biogenesis is initiated in mammalian cells in response to viral infection. Here, using genome-wide short interfering RNA screens, we find that the endosomal protein sorting nexin 5 (SNX5)3,4 is essential for virus-induced, but not for basal, stress- or endosome-induced, autophagy. We show that SNX5 deletion increases cellular susceptibility to viral infection in vitro, and that Snx5 knockout in mice enhances lethality after infection with several human viruses. Mechanistically, SNX5 interacts with beclin 1 and ATG14-containing class III phosphatidylinositol-3-kinase (PI3KC3) complex 1 (PI3KC3-C1), increases the lipid kinase activity of purified PI3KC3-C1, and is required for endosomal generation of phosphatidylinositol-3-phosphate (PtdIns(3)P) and recruitment of the PtdIns(3)P-binding protein WIPI2 to virion-containing endosomes. These findings identify a context- and organelle-specific mechanism-SNX5-dependent PI3KC3-C1 activation at endosomes-for initiation of autophagy during viral infection.


Subject(s)
Autophagy/immunology , Sorting Nexins/metabolism , Viruses/immunology , Animals , Autophagy/genetics , Autophagy-Related Proteins/metabolism , Beclin-1/metabolism , Cell Line , Class III Phosphatidylinositol 3-Kinases/metabolism , Endosomes/metabolism , Female , Humans , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , Sorting Nexins/deficiency , Sorting Nexins/genetics , Vesicular Transport Proteins/metabolism
5.
Nature ; 578(7796): 605-609, 2020 02.
Article in English | MEDLINE | ID: mdl-32051584

ABSTRACT

The activation of adenosine monophosphate-activated protein kinase (AMPK) in skeletal muscle coordinates systemic metabolic responses to exercise1. Autophagy-a lysosomal degradation pathway that maintains cellular homeostasis2-is upregulated during exercise, and a core autophagy protein, beclin 1, is required for AMPK activation in skeletal muscle3. Here we describe a role for the innate immune-sensing molecule Toll-like receptor 9 (TLR9)4, and its interaction with beclin 1, in exercise-induced activation of AMPK in skeletal muscle. Mice that lack TLR9 are deficient in both exercise-induced activation of AMPK and plasma membrane localization of the GLUT4 glucose transporter in skeletal muscle, but are not deficient in autophagy. TLR9 binds beclin 1, and this interaction is increased by energy stress (glucose starvation and endurance exercise) and decreased by a BCL2 mutation3,5 that blocks the disruption of BCL2-beclin 1 binding. TLR9 regulates the assembly of the endolysosomal phosphatidylinositol 3-kinase complex (PI3KC3-C2)-which contains beclin 1 and UVRAG-in skeletal muscle during exercise, and knockout of beclin 1 or UVRAG inhibits the cellular AMPK activation induced by glucose starvation. Moreover, TLR9 functions in a muscle-autonomous fashion in ex vivo contraction-induced AMPK activation, glucose uptake and beclin 1-UVRAG complex assembly. These findings reveal a heretofore undescribed role for a Toll-like receptor in skeletal-muscle AMPK activation and glucose metabolism during exercise, as well as unexpected crosstalk between this innate immune sensor and autophagy proteins.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Beclin-1/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Toll-Like Receptor 9/metabolism , Animals , Autophagy , Enzyme Activation , Exercise , Glucose/metabolism , Humans , Male , Mice , Models, Animal , Muscle, Skeletal/enzymology , Phosphatidylinositol 3-Kinase/metabolism , Toll-Like Receptor 9/deficiency , Toll-Like Receptor 9/genetics , Tumor Suppressor Proteins/metabolism
6.
Nature ; 558(7708): 136-140, 2018 06.
Article in English | MEDLINE | ID: mdl-29849149

ABSTRACT

Autophagy increases the lifespan of model organisms; however, its role in promoting mammalian longevity is less well-established1,2. Here we report lifespan and healthspan extension in a mouse model with increased basal autophagy. To determine the effects of constitutively increased autophagy on mammalian health, we generated targeted mutant mice with a Phe121Ala mutation in beclin 1 (Becn1F121A/F121A) that decreases its interaction with the negative regulator BCL2. We demonstrate that the interaction between beclin 1 and BCL2 is disrupted in several tissues in Becn1 F121A/F121A knock-in mice in association with higher levels of basal autophagic flux. Compared to wild-type littermates, the lifespan of both male and female knock-in mice is significantly increased. The healthspan of the knock-in mice also improves, as phenotypes such as age-related renal and cardiac pathological changes and spontaneous tumorigenesis are diminished. Moreover, mice deficient in the anti-ageing protein klotho 3 have increased beclin 1 and BCL2 interaction and decreased autophagy. These phenotypes, along with premature lethality and infertility, are rescued by the beclin 1(F121A) mutation. Together, our data demonstrate that disruption of the beclin 1-BCL2 complex is an effective mechanism to increase autophagy, prevent premature ageing, improve healthspan and promote longevity in mammals.


Subject(s)
Aging/physiology , Autophagy/physiology , Beclin-1/metabolism , Longevity/physiology , Proto-Oncogene Proteins c-bcl-2/metabolism , Aging/genetics , Animals , Autophagosomes/metabolism , Beclin-1/genetics , Cells, Cultured , Female , Fibroblasts/cytology , Gene Knock-In Techniques , Glucuronidase/deficiency , Glucuronidase/genetics , HeLa Cells , Health , Humans , Klotho Proteins , Longevity/genetics , Male , Mice , Mice, Inbred C57BL , Mutation
7.
Nature ; 561(7723): E30, 2018 09.
Article in English | MEDLINE | ID: mdl-29921925

ABSTRACT

In this Letter, the graphs in Fig. 2a and c were inadvertently the same owing to a copy and paste error from the original graphs in Prism. The Source Data files containing the raw data were correct. Fig. 2c has been corrected online.

8.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Article in English | MEDLINE | ID: mdl-33495338

ABSTRACT

Beclin 1, an autophagy and haploinsufficient tumor-suppressor protein, is frequently monoallelically deleted in breast and ovarian cancers. However, the precise mechanisms by which Beclin 1 inhibits tumor growth remain largely unknown. To address this question, we performed a genome-wide CRISPR/Cas9 screen in MCF7 breast cancer cells to identify genes whose loss of function reverse Beclin 1-dependent inhibition of cellular proliferation. Small guide RNAs targeting CDH1 and CTNNA1, tumor-suppressor genes that encode cadherin/catenin complex members E-cadherin and alpha-catenin, respectively, were highly enriched in the screen. CRISPR/Cas9-mediated knockout of CDH1 or CTNNA1 reversed Beclin 1-dependent suppression of breast cancer cell proliferation and anchorage-independent growth. Moreover, deletion of CDH1 or CTNNA1 inhibited the tumor-suppressor effects of Beclin 1 in breast cancer xenografts. Enforced Beclin 1 expression in MCF7 cells and tumor xenografts increased cell surface localization of E-cadherin and decreased expression of mesenchymal markers and beta-catenin/Wnt target genes. Furthermore, CRISPR/Cas9-mediated knockout of BECN1 and the autophagy class III phosphatidylinositol kinase complex 2 (PI3KC3-C2) gene, UVRAG, but not PI3KC3-C1-specific ATG14 or other autophagy genes ATG13, ATG5, or ATG7, resulted in decreased E-cadherin plasma membrane and increased cytoplasmic E-cadherin localization. Taken together, these data reveal previously unrecognized cooperation between Beclin 1 and E-cadherin-mediated tumor suppression in breast cancer cells.


Subject(s)
Beclin-1/metabolism , Breast Neoplasms/metabolism , Cadherins/metabolism , Genes, Tumor Suppressor , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Autophagy-Related Proteins/metabolism , Breast Neoplasms/pathology , CRISPR-Cas Systems/genetics , Cell Membrane/metabolism , Cell Proliferation/genetics , Female , Genome, Human , Humans , Interferons/metabolism , MCF-7 Cells , Mice, Inbred NOD , Mice, SCID , Protein Transport , Signal Transduction , Tumor Suppressor Proteins/metabolism , Xenograft Model Antitumor Assays , alpha Catenin/metabolism
9.
FASEB J ; 34(2): 3129-3150, 2020 02.
Article in English | MEDLINE | ID: mdl-31908069

ABSTRACT

Aging-related organ degeneration is driven by multiple factors including the cell maintenance mechanisms of autophagy, the cytoprotective protein αKlotho, and the lesser known effects of excess phosphate (Pi), or phosphotoxicity. To examine the interplay between Pi, autophagy, and αKlotho, we used the BK/BK mouse (homozygous for mutant Becn1F121A ) with increased autophagic flux, and αKlotho-hypomorphic mouse (kl/kl) with impaired urinary Pi excretion, low autophagy, and premature organ dysfunction. BK/BK mice live longer than WT littermates, and have heightened phosphaturia from downregulation of two key NaPi cotransporters in the kidney. The multi-organ failure in kl/kl mice was rescued in the double-mutant BK/BK;kl/kl mice exhibiting lower plasma Pi, improved weight gain, restored plasma and renal αKlotho levels, decreased pathology of multiple organs, and improved fertility compared to kl/kl mice. The beneficial effects of heightened autophagy from Becn1F121A was abolished by chronic high-Pi diet which also shortened life span in the BK/BK;kl/kl mice. Pi promoted beclin 1 binding to its negative regulator BCL2, which impairs autophagy flux. Pi downregulated αKlotho, which also independently impaired autophagy. In conclusion, Pi, αKlotho, and autophagy interact intricately to affect each other. Both autophagy and αKlotho antagonizes phosphotoxicity. In concert, this tripartite system jointly determines longevity and life span.


Subject(s)
Aging/metabolism , Autophagy , Glucuronidase/metabolism , Phosphates/metabolism , Animals , Beclin-1/deficiency , Beclin-1/genetics , Female , Glucuronidase/genetics , HEK293 Cells , Humans , Kidney/metabolism , Klotho Proteins , Male , Mice , Protein Binding , Proto-Oncogene Proteins c-bcl-2/metabolism
10.
Proc Natl Acad Sci U S A ; 115(16): 4176-4181, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29610308

ABSTRACT

Allelic loss of the autophagy gene, beclin 1/BECN1, increases the risk of patients developing aggressive, including human epidermal growth factor receptor 2 (HER2)-positive, breast cancers; however, it is not known whether autophagy induction may be beneficial in preventing HER2-positive breast tumor growth. We explored the regulation of autophagy in breast cancer cells by HER2 in vitro and the effects of genetic and pharmacological strategies to increase autophagy on HER2-driven breast cancer growth in vivo. Our findings demonstrate that HER2 interacts with Beclin 1 in breast cancer cells and inhibits autophagy. Mice with increased basal autophagy due to a genetically engineered mutation in Becn1 are protected from HER2-driven mammary tumorigenesis, and HER2 fails to inhibit autophagy in primary cells derived from these mice. Moreover, treatment of mice with HER2-positive human breast cancer xenografts with the Tat-Beclin 1 autophagy-inducing peptide inhibits tumor growth as effectively as a clinically used HER2 tyrosine kinase inhibitor (TKI). This inhibition of tumor growth is associated with a robust induction of autophagy, a disruption of HER2/Beclin 1 binding, and a transcriptional signature in the tumors distinct from that observed with HER2 TKI treatment. Taken together, these findings indicate that the HER2-mediated inhibition of Beclin 1 and autophagy likely contributes to HER2-mediated tumorigenesis and that strategies to block HER2/Beclin 1 binding and/or increase autophagy may represent a new therapeutic approach for HER2-positive breast cancers.


Subject(s)
Autophagy , Beclin-1/physiology , Neoplasm Proteins/physiology , Receptor, ErbB-2/physiology , Amino Acid Substitution , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Beclin-1/deficiency , Beclin-1/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Gene Knock-In Techniques , Humans , Lapatinib , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Targeted Therapy , Mutation , Neoplasm Proteins/deficiency , Neoplasm Proteins/genetics , Peptide Fragments/therapeutic use , Protein Binding/drug effects , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Quinazolines/pharmacology , Random Allocation , Receptor, ErbB-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL