Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Cell ; 180(4): 655-665.e18, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32004463

ABSTRACT

Human endocannabinoid systems modulate multiple physiological processes mainly through the activation of cannabinoid receptors CB1 and CB2. Their high sequence similarity, low agonist selectivity, and lack of activation and G protein-coupling knowledge have hindered the development of therapeutic applications. Importantly, missing structural information has significantly held back the development of promising CB2-selective agonist drugs for treating inflammatory and neuropathic pain without the psychoactivity of CB1. Here, we report the cryoelectron microscopy structures of synthetic cannabinoid-bound CB2 and CB1 in complex with Gi, as well as agonist-bound CB2 crystal structure. Of important scientific and therapeutic benefit, our results reveal a diverse activation and signaling mechanism, the structural basis of CB2-selective agonists design, and the unexpected interaction of cholesterol with CB1, suggestive of its endogenous allosteric modulating role.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , Receptor, Cannabinoid, CB1/chemistry , Receptor, Cannabinoid, CB2/chemistry , Signal Transduction , Allosteric Regulation , Allosteric Site , Animals , CHO Cells , Cannabinoid Receptor Agonists/chemistry , Cannabinoids/chemistry , Cannabinoids/pharmacology , Cell Line, Tumor , Cholesterol/chemistry , Cholesterol/pharmacology , Cricetinae , Cricetulus , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Humans , Molecular Dynamics Simulation , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Sf9 Cells , Spodoptera
2.
Cell ; 176(3): 459-467.e13, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30639103

ABSTRACT

The cannabinoid receptor CB2 is predominately expressed in the immune system, and selective modulation of CB2 without the psychoactivity of CB1 has therapeutic potential in inflammatory, fibrotic, and neurodegenerative diseases. Here, we report the crystal structure of human CB2 in complex with a rationally designed antagonist, AM10257, at 2.8 Å resolution. The CB2-AM10257 structure reveals a distinctly different binding pose compared with CB1. However, the extracellular portion of the antagonist-bound CB2 shares a high degree of conformational similarity with the agonist-bound CB1, which led to the discovery of AM10257's unexpected opposing functional profile of CB2 antagonism versus CB1 agonism. Further structural analysis using mutagenesis studies and molecular docking revealed the molecular basis of their function and selectivity for CB2 and CB1. Additional analyses of our designed antagonist and agonist pairs provide important insight into the activation mechanism of CB2. The present findings should facilitate rational drug design toward precise modulation of the endocannabinoid system.


Subject(s)
Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/ultrastructure , Animals , Cannabinoid Receptor Antagonists/pharmacology , Cannabinoids/pharmacology , Drug Design , Endocannabinoids , Humans , Ligands , Molecular Docking Simulation , Protein Binding , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/chemistry , Receptors, Cannabinoid/chemistry , Receptors, Cannabinoid/metabolism , Receptors, Cannabinoid/ultrastructure , Receptors, G-Protein-Coupled/metabolism , Sf9 Cells , Structure-Activity Relationship
3.
Cell ; 167(3): 750-762.e14, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27768894

ABSTRACT

Cannabinoid receptor 1 (CB1) is the principal target of Δ9-tetrahydrocannabinol (THC), a psychoactive chemical from Cannabis sativa with a wide range of therapeutic applications and a long history of recreational use. CB1 is activated by endocannabinoids and is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. Here, we present the 2.8 Å crystal structure of human CB1 in complex with AM6538, a stabilizing antagonist, synthesized and characterized for this structural study. The structure of the CB1-AM6538 complex reveals key features of the receptor and critical interactions for antagonist binding. In combination with functional studies and molecular modeling, the structure provides insight into the binding mode of naturally occurring CB1 ligands, such as THC, and synthetic cannabinoids. This enhances our understanding of the molecular basis for the physiological functions of CB1 and provides new opportunities for the design of next-generation CB1-targeting pharmaceuticals.


Subject(s)
Cannabinoid Receptor Antagonists/chemistry , Morpholines/chemistry , Pyrazoles/chemistry , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/chemistry , Binding Sites , Cannabinoids/pharmacology , Cannabis/chemistry , Crystallography, X-Ray , Dronabinol/pharmacology , Endocannabinoids/pharmacology , Humans , Ligands , Morpholines/chemical synthesis , Protein Binding , Protein Conformation, alpha-Helical , Pyrazoles/chemical synthesis
4.
Nature ; 601(7893): 452-459, 2022 01.
Article in English | MEDLINE | ID: mdl-34912117

ABSTRACT

Structure-based virtual ligand screening is emerging as a key paradigm for early drug discovery owing to the availability of high-resolution target structures1-4 and ultra-large libraries of virtual compounds5,6. However, to keep pace with the rapid growth of virtual libraries, such as readily available for synthesis (REAL) combinatorial libraries7, new approaches to compound screening are needed8,9. Here we introduce a modular synthon-based approach-V-SYNTHES-to perform hierarchical structure-based screening of a REAL Space library of more than 11 billion compounds. V-SYNTHES first identifies the best scaffold-synthon combinations as seeds suitable for further growth, and then iteratively elaborates these seeds to select complete molecules with the best docking scores. This hierarchical combinatorial approach enables the rapid detection of the best-scoring compounds in the gigascale chemical space while performing docking of only a small fraction (<0.1%) of the library compounds. Chemical synthesis and experimental testing of novel cannabinoid antagonists predicted by V-SYNTHES demonstrated a 33% hit rate, including 14 submicromolar ligands, substantially improving over a standard virtual screening of the Enamine REAL diversity subset, which required approximately 100 times more computational resources. Synthesis of selected analogues of the best hits further improved potencies and affinities (best inhibitory constant (Ki) = 0.9 nM) and CB2/CB1 selectivity (50-200-fold). V-SYNTHES was also tested on a kinase target, ROCK1, further supporting its use for lead discovery. The approach is easily scalable for the rapid growth of combinatorial libraries and potentially adaptable to any docking algorithm.


Subject(s)
Algorithms , Combinatorial Chemistry Techniques , Drug Discovery , Libraries, Digital , Ligands , Molecular Docking Simulation , rho-Associated Kinases
5.
Biochem Biophys Res Commun ; 591: 31-36, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34995983

ABSTRACT

2-Arachidonoylglycerol (2-AG) is the most potent and abundant endocannabinoid that acts as a full agonist at the cannabinoid 1 (CB1) and 2 (CB2) receptors. It serves as a substrate for several serine hydrolases, including monoacylglycerol lipase (MGL), α/ß hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH). However, 2-AG's rapid conversion to 1-AG (the S stereoisomer) and 3-AG (the R stereoisomer) complicates in vivo signaling. Here, we present the interaction profiles of 2-AG and its isomerization products, 1- and 3-AG, with the endocannabinoid MGL, ABHD6 and FAAH enzymes as well as the CB1 receptor. The 1- and 3-AG enantiomers are less prone to isomerization, and their affinities to endocannabinoid enzymes and potencies at CB1 receptor are quite different compared to 2-AG. Although MGL is the principal hydrolytic enzyme of 2-AG, 3-AG (the R isomer) appears to be the best substrate for hMGL. Contrarily, 1-AG (the S isomer) demonstrates the worst substrate profile, indicating that the stereochemistry of 1(3)-monoacylglycerols is very important for MGL enzyme. On the other hand, both 1- and 3-AG (the sn1 monoacylglycerols) are efficiently hydrolyzed by hABHD6 without preference, while 2-AG (the sn2 monoacylglycerol) has the lowest rate of hydrolysis. FAAH, the principal hydrolytic enzyme for arachidonoylethanolamide (anandamide, AEA), catalyzes the hydrolysis of all three isomers with similar efficiencies. In a functional cAMP assay at CB1 receptor, all three isomers behaved as agonists, with 2-AG being the most potent, followed by 3-AG then 1-AG. The presented data provides stereochemical insights to design chemically stable AG analogs with preferential stability against enzymes of interest.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Receptor, Cannabinoid, CB1/metabolism , Amidohydrolases/metabolism , Arachidonic Acids/chemistry , Buffers , Chromatography, High Pressure Liquid , Cyclic AMP/metabolism , Endocannabinoids/chemistry , Glycerides/chemistry , HEK293 Cells , Humans , Hydrolysis , Isomerism , Kinetics , Ligands , Monoacylglycerol Lipases/metabolism , Substrate Specificity
6.
Bioorg Med Chem Lett ; 38: 127882, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33636308

ABSTRACT

As a continuation of earlier work on classical cannabinoids bearing bulky side chains we report here the design, synthesis, and biological evaluation of 3'-functionalized oxa-adamantyl cannabinoids as a novel class of cannabinergic ligands. Key synthetic steps involve nucleophilic addition/transannular cyclization of aryllithium to epoxyketone in the presence of cerium chloride and stereoselective construction of the tricyclic cannabinoid nucleus. The synthesis of the oxa-adamantyl cannabinoids is convenient, and amenable to scale up allowing the preparation of these analogs in sufficient quantities for detailed in vitro evaluation. The novel oxa-adamantyl cannabinoids reported here were found to be high affinity ligands for the CB1 and CB2 cannabinoid receptors. In the cyclase assay these compounds were found to behave as potent and efficacious CB1 receptor agonists. Isothiocyanate analog AM10504 is capable of irreversibly labeling both the CB1 and CB2 receptors.


Subject(s)
Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB2/agonists , Cannabinoids/chemistry , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship
7.
Protein Expr Purif ; 145: 108-117, 2018 05.
Article in English | MEDLINE | ID: mdl-29253688

ABSTRACT

N-acylethanolamine acid amidase (NAAA) is an N-terminal nucleophile (Ntn) enzyme with a catalytic cysteine residue that has highest activity at acidic pH. The most prominent substrate hydrolyzed is palmitoylethanolamine (PEA), which regulates inflammation. Inhibitors of NAAA have been shown to increase endogenous levels of PEA, and are of interest as potential treatments for inflammatory disorders and other maladies. Currently, there are no X-ray or NMR structures of NAAA available to inform medicinal chemistry. Additionally, there are a limited number of enzyme structures available that are within the Ntn-hydrolase family, have a catalytic cysteine residue, and have a high sequence homology. For these reasons, we developed expression and purification methods for the production of enzyme samples amenable to structural characterization. Mammalian cells are necessary for post-translational processing, including signal sequence cleavage and glycosylation, that are required for a correctly folded zymogen before conversion to active, and mature enzyme. We have identified an expression construct, mammalian cell line, specific media and additives to express and secrete hNAAA zymogen and we further optimized propagation conditions and show this secretion method is suitable for isotopic labeling of the protein. We refined purification methods to achieve a high degree of protein purity potentially suited to crystallography. Glycosylated proteins can present challenges to biophysical methods. Therefore we deglycosylate the enzyme and show that the activity of the mature enzyme is not affected by deglycosylation.


Subject(s)
Amidohydrolases/chemistry , Gene Expression , Amidohydrolases/metabolism , Cell Line , Glycosylation , Humans , Hydrolysis , Isotope Labeling
8.
J Proteome Res ; 16(7): 2419-2428, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28374590

ABSTRACT

Cannabinoid 2 receptor (CB2R), a Class-A G-protein coupled receptor (GPCR), is a promising drug target under a wide array of pathological conditions. Rational drug design has been hindered due to our poor understanding of the structural features involved in ligand binding. Binding of a high-affinity biarylpyrazole inverse agonist AM1336 to a library of the human CB2 receptor (hCB2R) cysteine-substituted mutants provided indirect evidence that two cysteines in transmembrane helix-7 (H7) were critical for the covalent attachment. We used proteomics analysis of the hCB2R with bound AM1336 to directly identify peptides with covalently attached ligand and applied in silico modeling for visualization of the ligand-receptor interactions. The hCB2R, with affinity tags (FlaghCB2His6), was produced in a baculovirus-insect cell expression system and purified as a functional receptor using immunoaffinity chromatography. Using mass spectrometry-based bottom-up proteomic analysis of the hCB2R-AM1336, we identified a peptide with AM1336 attached to the cysteine C284(7.38) in H7. The hCB2R homology model in lipid bilayer accommodated covalent attachment of AM1336 to C284(7.38), supporting both biochemical and mass spectrometric data. This work consolidates proteomics data and in silico modeling and integrates with our ligand-assisted protein structure (LAPS) experimental paradigm to assist in structure-based design of cannabinoid antagonist/inverse agonists.


Subject(s)
Cannabinoid Receptor Agonists/chemistry , Pyrazoles/chemistry , Receptor, Cannabinoid, CB2/chemistry , Amino Acid Motifs , Animals , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cannabinoid Receptor Agonists/metabolism , Cloning, Molecular , Cysteine/chemistry , Cysteine/metabolism , Gene Expression , Humans , Ligands , Mass Spectrometry , Models, Molecular , Mutation , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Pyrazoles/metabolism , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/genetics , Receptor, Cannabinoid, CB2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spodoptera
9.
J Biol Chem ; 291(6): 2556-65, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26555264

ABSTRACT

The serine hydrolase monoacylglycerol lipase (MGL) functions as the main metabolizing enzyme of 2-arachidonoyl glycerol, an endocannabinoid signaling lipid whose elevation through genetic or pharmacological MGL ablation exerts therapeutic effects in various preclinical disease models. To inform structure-based MGL inhibitor design, we report the direct NMR detection of a reversible equilibrium between active and inactive states of human MGL (hMGL) that is slow on the NMR time scale and can be modulated in a controlled manner by pH, temperature, and select point mutations. Kinetic measurements revealed that hMGL substrate turnover is rate-limited across this equilibrium. We identify a network of aromatic interactions and hydrogen bonds that regulates hMGL active-inactive state interconversion. The data highlight specific inter-residue interactions within hMGL modulating the enzymes function and implicate transitions between active (open) and inactive (closed) states of the hMGL lid domain in controlling substrate access to the enzymes active site.


Subject(s)
Monoacylglycerol Lipases/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Tertiary , Structure-Activity Relationship
10.
Anal Biochem ; 536: 90-95, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28822686

ABSTRACT

Human monoacylglycerol lipase (hMAGL) plays a key role in homeostatic tuning of the endocannabinoid signaling system and supports aggressive tumorogenesis, making this enzyme a promising therapeutic target. hMAGL features a membrane-associated lid domain that regulates entry of endocannabinoid lipid substrates into the hydrophobic channel accessing the active site, likely from the membrane bilayer. The present work applied simultaneous surface plasmon resonance and electrochemical impedance spectroscopy measurements to show that, in absence of the substrate, hMAGL can remove phospholipid molecules from the membrane and, thereby, disintegrate pre-formed, intact, tethered phospholipid bilayer membrane mimetics (tBLMs) composed of unsaturated phosphatidylcholines. To probe the mechanism of hMAGL-induced on tBLMs compromise, we investigated the effect of wild type and mutant hMAGLs and hMAGL rendered catalytically inactive, as a function of concentration and in the presence of chemically distinct active-site inhibitors. Our data show that hMAGL's lid domain and hydrophobic substrate-binding pocket play important roles in hMAGL-induced bilayer lipid mobilization, whereas hydrolytic activity of the enzyme does not appear to be a factor.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Phospholipids/chemistry , Phospholipids/metabolism , Binding Sites , Dielectric Spectroscopy , Humans , Monoacylglycerol Lipases/genetics , Mutation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Surface Plasmon Resonance
11.
Biochemistry ; 52(29): 5016-26, 2013 Jul 23.
Article in English | MEDLINE | ID: mdl-23795559

ABSTRACT

Human monoacylglycerol lipase (hMGL) regulates endocannabinoid signaling primarily by deactivating the lipid messenger 2-arachidonoylglycerol. Agents that carbamylate hMGLs catalytic Ser(122) constitute a leading class of therapeutically promising hMGL inhibitors. We have applied peptide-level hydrogen/deuterium exchange mass spectrometry to characterize hMGL's conformational responses to two potent carbamylating inhibitors, AM6580 (irreversible) and AM6701 (slowly reversible). A dynamic, solvent-exposed lid domain is characteristic of hMGL's solution conformation. Both hMGL inhibitors restricted backbone enzyme motility in the active-site region and increased substrate binding-pocket solvent exposure. Covalent reaction of AM6580 with hMGL generates a bulkier carbamylated Ser(122) residue as compared to the more discrete Ser(122) modification by AM6701, a difference reflected in AM6580's more pronounced effect upon hMGL conformation. We demonstrate that structurally distinct carbamylating hMGL inhibitors generate particular conformational ensembles characterized by region-specific hMGL dynamics. By demonstrating the distinctive influences of two hMGL inhibitors on enzyme conformation, this study furthers our understanding at the molecular level of the dynamic features of hMGL interaction with small-molecule ligands.


Subject(s)
Enzyme Inhibitors/chemistry , Mass Spectrometry/methods , Monoacylglycerol Lipases/antagonists & inhibitors , Catalytic Domain , Humans , Hydrogen/chemistry , Models, Molecular , Protein Conformation , Recombinant Proteins/chemistry
12.
ChemMedChem ; 18(21): e202100406, 2023 11 02.
Article in English | MEDLINE | ID: mdl-34486233

ABSTRACT

Fine-tuning than complete disruption of 2-arachidonoylglycerol (2-AG) metabolism in the brain represents a promising pharmacological approach to limit potential untoward effects associated with complete blockade of monoacylglycerol lipase (MGL), the primary hydrolase of 2-AG. This could be achieved through a/b-hydrolase domain containing 6 (ABHD6) inhibition, which will provide a smaller and safer contribution to 2-AG regulation in the brain. Pharmacological studies with ABHD6 inhibitors have recently been reported, where modulation of ABHD6 activity either through CB1R-dependent or CB1R-independent processes showed promise in preclinical models of epilepsy, neuropathic pain and inflammation. Furthermore in the periphery, ABHD6 modulates 2-AG and other fatty acid monoacylglycerols (MAGs) and is implicated in Type-2 diabetes, metabolic syndrome and potentially other diseases. Herein, we report the discovery of single-digit nanomolar potent and highly specific ABHD6 inhibitors with >1000-fold selectivity against MGL and FAAH. The new ABHD6 inhibitors provide early leads to develop therapeutics for neuroprotection and the treatment of inflammation and diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Neuralgia , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Inflammation/drug therapy , Neuralgia/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hydrolases , Monoacylglycerol Lipases
13.
J Proteome Res ; 11(2): 972-81, 2012 Feb 03.
Article in English | MEDLINE | ID: mdl-22040171

ABSTRACT

N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that primarily degrades palmitoylethanolamine (PEA), a lipid amide that inhibits inflammatory responses. We developed a HEK293 cell line stably expressing the NAAA pro-enzyme (zymogen) and a single step chromatographic purification of the protein from the media. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry MALDI-TOF MS analysis of the zymogen (47.7 kDa) treated with peptide-N-glycosidase F (PNGase F) identified 4 glycosylation sites, and acid cleavage of the zymogen into α- and ß-subunits (14.6 and 33.3 kDa) activated the enzyme. Size exclusion chromatography estimated the mass of the active enzyme as 45 ± 3 kDa, suggesting formation of an α/ß heterodimer. MALDI-TOF MS fingerprinting covered more than 80% of the amino acid sequence, including the N-terminal peptides, and evidence for the lack of a disulfide bond between subunits. The significance of the cysteine residues was established by their selective alkylation resulting in almost complete loss of activity. The purified enzyme was kinetically characterized with PEA and a novel fluorogenic substrate, N-(4-methyl coumarin) palmitamide (PAMCA). The production of sufficient quantities of NAAA and a high throughput assay could be useful in discovering novel inhibitors and determining the structure and function of this enzyme.


Subject(s)
Amidohydrolases/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Amides , Amidohydrolases/isolation & purification , Amidohydrolases/metabolism , Amino Acid Sequence , Chromatography, Gel , Endocannabinoids , Enzyme Precursors/chemistry , Enzyme Precursors/isolation & purification , Enzyme Precursors/metabolism , Ethanolamines , Glycosylation , HEK293 Cells , Humans , Kinetics , Molecular Sequence Data , Molecular Weight , Palmitic Acids , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism
14.
Eur J Med Chem ; 230: 114027, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35051750

ABSTRACT

In earlier work, we explored the SAR for the C3 side chain pharmacophore in the hexahydrocannabinol template represented by the drug nabilone, which resulted in the development of AM2389. In an effort for further optimization, we have merged features of nabilone and AM2389 and explored the C3 side chain with varying chain lengths and terminal substitutions. Of the compounds described here, a nabilone analog, AM8936, with the C6'-cyano-substituted side chain, was identified as the most successful analog capable of serving as a potential candidate for further development and a valuable tool for further in vivo studies. AM8936 behaved as a balanced and potent CB1 agonist in functional assays and was a potent and efficacious CB1 agonist in vivo. Our SAR studies are highlighted with the docking of AM8936 on the crystal structure of the hCB1 receptor.


Subject(s)
Dronabinol , Receptor, Cannabinoid, CB1 , Dronabinol/analogs & derivatives , Dronabinol/pharmacology , Receptor, Cannabinoid, CB1/agonists , Structure-Activity Relationship
15.
J Proteome Res ; 10(10): 4789-98, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21861534

ABSTRACT

The lack of experimental characterization of the structures and ligand-binding motifs of therapeutic G-protein coupled receptors (GPCRs) hampers rational drug discovery. The human cannabinoid receptor 2 (hCB2R) is a class-A GPCR and promising therapeutic target for small-molecule cannabinergic agonists as medicines. Prior mutational and modeling data constitute provisional evidence that AM-841, a high-affinity classical cannabinoid, interacts with cysteine C6.47(257) in hCB2R transmembrane helix 6 (TMH6) to afford improved hCB2R selectivity and unprecedented agonist potency. We now apply bottom-up mass spectrometry (MS)-based proteomics to define directly the hCB2R-AM-841 interaction at the amino-acid level. Recombinant hCB2R, overexpressed as an N-terminal FLAG-tagged/C-terminal 6His-tagged protein (FLAG-hCB2R-6His) with a baculovirus system, was solubilized and purified by immunochromatography as functional receptor. A multiplex multiple reaction monitoring (MRM)-MS method was developed that allowed us to observe unambiguously all seven discrete TMH peptides in the tryptic digest of purified FLAG-hCB2R-6His and demonstrate that AM-841 modifies hCB2R TMH6 exclusively. High-resolution mass spectra of the TMH6 tryptic peptide obtained by Q-TOF MS/MS analysis demonstrated that AM-841 covalently and selectively modifies hCB2R at TMH6 cysteine C6.47(257). These data demonstrate how integration of MS-based proteomics into a ligand-assisted protein structure (LAPS) experimental paradigm can offer guidance to structure-enabled GPCR agonist design.


Subject(s)
Cysteine/chemistry , Dronabinol/analogs & derivatives , Mass Spectrometry/methods , Proteomics/methods , Receptor, Cannabinoid, CB2/chemistry , Amino Acid Sequence , Animals , Dronabinol/pharmacology , Epitopes/chemistry , Humans , Ligands , Molecular Sequence Data , Peptides/chemistry , Receptors, G-Protein-Coupled/chemistry , Recombinant Proteins/chemistry , Spodoptera
16.
J Med Chem ; 64(7): 3870-3884, 2021 04 08.
Article in English | MEDLINE | ID: mdl-33761251

ABSTRACT

We report the development of novel cannabinergic probes that can stabilize the cannabinoid receptors (CBRs) through tight binding interactions. Ligand design involves the introduction of select groups at a judiciously chosen position within the classical hexahydrocannabinol template (monofunctionalized probes). Such groups include the electrophilic isothiocyanato, the photoactivatable azido, and the polar cyano moieties. These groups can also be combined to produce bifunctionalized probes potentially capable of interacting at two distinct sites within the CBR-binding domains. These novel compounds display remarkably high binding affinities for CBRs and are exceptionally potent agonists. A key ligand (27a, AM11245) exhibits exceptionally high potency in both in vitro and in vivo assays and was designated as "megagonist," a property attributed to its tight binding profile. By acting both centrally and peripherally, 27a distinguishes itself from our previously reported "megagonist" AM841, whose functions are restricted to the periphery.


Subject(s)
Cannabinoid Receptor Agonists/pharmacology , Cannabinoids/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Analgesics/chemical synthesis , Analgesics/metabolism , Analgesics/pharmacology , Animals , Body Temperature Regulation/drug effects , CHO Cells , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/metabolism , Cannabinoids/chemical synthesis , Cannabinoids/metabolism , Cricetulus , Humans , Ligands , Locomotion/drug effects , Male , Mice , Molecular Docking Simulation , Rats
17.
J Proteome Res ; 9(4): 1746-53, 2010 Apr 05.
Article in English | MEDLINE | ID: mdl-20131867

ABSTRACT

The human cannabinoid 1 receptor (hCB1), a ubiquitous G protein-coupled receptor (GPCR), transmits cannabinergic signals that participate in diverse (patho)physiological processes. Pharmacotherapeutic hCB1 targeting is considered a tractable approach for treating such prevalent diseases as obesity, mood disorders, and drug addiction. The hydrophobic nature of the transmembrane helices of hCB1 presents a formidable difficulty to its direct structural analysis. Comprehensive experimental characterization of functional hCB1 by mass spectrometry (MS) is essential to the targeting of affinity probes that can be used to define directly hCB1 binding domains using a ligand-assisted experimental approach. Such information would greatly facilitate the rational design of hCB1-selective agonists/antagonists with therapeutic potential. We report the first high-coverage MS analysis of the primary sequence of the functional hCB1 receptor, one of the few such comprehensive MS-based analyses of any GPCR. Recombinant C-terminal hexa-histidine-tagged hCB1 (His6-hCB1) was expressed in cultured insect (Spodoptera frugiperda) cells, solubilized by a procedure devised to enhance receptor purity following metal-affinity chromatography, desalted by buffer exchange, and digested in solution with (chymo)trypsin. "Bottom-up" nanoLC-MS/MS of the (chymo)tryptic digests afforded a degree of overall hCB1 coverage (>94%) thus far reported for only two other GPCRs. This MS-compatible procedure devised for His6-hCB1 sample preparation, incorporating in-solution (chymo)trypsin digestion in the presence of a low concentration of CYMAL-5 detergent, may be applicable to the MS-based proteomic characterization of other GPCRs. This work should help enable future ligand-assisted structural characterization of hCB1 binding motifs at the amino-acid level using rationally designed and targeted covalent cannabinergic probes.


Subject(s)
Peptide Fragments/metabolism , Proteomics/methods , Receptor, Cannabinoid, CB1/chemistry , Recombinant Fusion Proteins/metabolism , Tandem Mass Spectrometry/methods , Amino Acid Sequence , Blotting, Western , Drug Design , Histidine/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Oligopeptides/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Signal Transduction
18.
Sci Rep ; 10(1): 18531, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33116203

ABSTRACT

Inhibition of human Monoacylglycerol Lipase (hMGL) offers a novel approach for treating neurological diseases. The design of inhibitors, targeting active-inactive conformational transitions of the enzyme, can be aided by understanding the interplay between structure and dynamics. Here, we report the effects of mutations within the catalytic triad on structure, conformational gating and dynamics of hMGL by combining kinetics, NMR, and HDX-MS data with metadynamics simulations. We found that point mutations alter delicate conformational equilibria between active and inactive states. HDX-MS reveals regions of the hMGL that become substantially more dynamic upon substitution of catalytic acid Asp-239 by alanine. These regions, located far from the catalytic triad, include not only loops but also rigid α-helixes and ß-strands, suggesting their involvement in allosteric regulation as channels for long-range signal transmission. The results identify the existence of a preorganized global communication network comprising of tertiary (residue-residue contacts) and quaternary (rigid-body contacts) networks that mediate robust, rapid intraprotein signal transmission. Catalytic Asp-239 controls hMGL allosteric communications and may be considered as an essential residue for the integration and transmission of information to enzymes' remote regions, in addition to its well-known role to facilitate Ser-122 activation. Our findings may assist in the identification of new druggable sites in hMGL.


Subject(s)
Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Monoacylglycerol Lipases/physiology , Allosteric Regulation , Catalysis , Humans , Kinetics , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Dynamics Simulation , Mutation , Mutation, Missense , Protein Conformation , Structure-Activity Relationship
19.
Chem Biol ; 15(8): 854-62, 2008 Aug 25.
Article in English | MEDLINE | ID: mdl-18721756

ABSTRACT

The active site of recombinant hexa-histidine-tagged human monoacylglycerol lipase (hMGL) is characterized by mass spectrometry using the inhibitors 5-((biphenyl-4-yl)methyl)-N,N-dimethyl-2H-tetrazole-2-carboxamide (AM6701), and N-arachidonylmaleimide (NAM) as probes. Carbamylation of Ser(129) by AM6701 in the putative hMGL catalytic triad demonstrates this residue's essential role in catalysis. Partial NAM alkylation of hMGL cysteine residues 215 and/or 249 was sufficient to achieve approximately 80% enzyme inhibition. Although Cys(215) and/or Cys(249) mutations to alanine(s) did not affect hMGL hydrolytic activity as compared with nonmutated hMGL, the C215A displayed heightened NAM sensitivity, whereas the C249A evidenced reduced NAM sensitivity. These data conclusively demonstrate a sulfhydryl-based mechanism for NAM inhibition of hMGL in which Cys(249) is of paramount importance. Identification of amino acids critical to the catalytic activity and pharmacological modulation of hMGL informs the design of selective MGL inhibitors as potential drugs.


Subject(s)
Catalytic Domain , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/chemistry , Mutation , Amides/chemistry , Amides/pharmacology , Amino Acid Sequence , Drug Design , Humans , Isomerism , Ligands , Maleimides/chemistry , Maleimides/pharmacology , Mass Spectrometry , Molecular Sequence Data , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Mutagenesis, Site-Directed
20.
Sci Rep ; 9(1): 890, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30696836

ABSTRACT

Human alpha/beta hydrolase domain 6 (hABHD6) is an enzyme that hydrolyzes 2-arachidonoylglycerol (2-AG), a potent agonist at both cannabinoid CB1 and CB2 receptors. In vivo modulation of ABHD6 expression has been shown to have potential therapeutic applications, making the enzyme a promising drug target. However, the lack of structural information on hABHD6 limits the discovery and design of selective inhibitors. We have performed E. coli expression, purification and activity profiling screening of different hABHD6 constructs and identified a truncated variant without N-terminal transmembrane (TM) domain, hΔ29-3-ABHD6, as the most promising protein for further characterization. The elimination of the TM domain did not affect 2-AG or fluorogenic arachidonoyl, 7-hydroxy-6-methoxy-4-methylcoumarin ester (AHMMCE) substrates hydrolysis, suggesting that the TM is not essential for enzyme catalytic activity. The hΔ29-3-ABHD6 variant was purified in a single step using Immobilized Metal Affinity Chromatography (IMAC), in-solution trypsin digested, and proteomically characterized by Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). The N-terminal peptide without methionine was identified indicating on a post-translational modification of the recombinant protein. The mechanism of inhibition of hABHD6 with AM6701 and WWL70 covalent probes was elucidated based on MS analysis of trypsin digested hABHD6 following the Ligand Assisted Protein Structure (LAPS) approach. We identified the carbamylated peptides containing catalytic serine (Ser148) suggesting a selective carbamylation of the enzyme by AM6701 or WWL70 and confirming an essential role of this residue in catalysis. The ability to produce substantial quantities of functional, pure hABHD6 will aid in the downstream structural characterization, and development of potent, selective inhibitors.


Subject(s)
Monoacylglycerol Lipases/chemistry , Monoacylglycerol Lipases/metabolism , Recombinant Proteins , Amino Acid Sequence , Chromatography, Affinity , Enzyme Activation , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/isolation & purification , Recombinant Fusion Proteins , Solubility , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL