Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem ; 27(6): 1002-1008, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30737133

ABSTRACT

Malaria remains a major public health problem worldwide, and it is responsible for high rates of morbidity and mortality. Resistance to current antimalarial drugs has been identified, and new drugs are urgently needed. In this study, we designed and synthesized seventeen novel quinolines based on the structures of mefloquine ((2,8-bis(trifluoromethyl)quinolin-4-yl)(piperidin-2-yl)methanol) and amodiaquine (4-((7-chloroquinolin-4-yl)amino)-2-((diethylamino)methyl)phenol) using ring bioisosteric replacement and molecular hybridization of the functional groups. The compounds were evaluated in vitro against Plasmodium falciparum and in vivo in mice infected with P. berghei. All derivatives presented anti-P. falciparum activity with IC50 values ranging from 0.083 to 33.0 µM. The compound with the best anti-P. falciparum activity was N-(5-methyl-4H-1,2,4-triazol-3-yl)-2,8-bis(trifluoromethyl)quinolin-4-amine (12) which showed an IC50 of 0.083 µM. The three most active compounds were selected for antimalarial activity tests against P. berghei-infected mice. Compound 12 was the most active on the 5th day after infection, reducing parasitemia by 66%, which is consistent with its in vitro activity. This is an important result as 12, a simpler molecule than mefloquine, does not contain the stereogenic center, and consequently, its synthesis in the laboratory is easier and less expensive. This system proved promising for the design of potential antimalarial compounds.


Subject(s)
Antimalarials/pharmacology , Malaria/drug therapy , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Quinolines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/therapeutic use , Cell Line , Drug Discovery , Erythrocytes/drug effects , Erythrocytes/parasitology , Halogenation , Haplorhini , Humans , Methylation , Mice , Quinolines/chemistry , Quinolines/therapeutic use
2.
Eur J Protistol ; 61(Pt B): 359-365, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28595932

ABSTRACT

Bromeliads are a diverse group of plants that includes many species whose individuals are capable of retaining water, forming habitats called phytotelmata. These habitats harbor a diversity of organisms including prokaryotes, unicellular eukaryotes, metazoans, and fungi. Among single-celled eukaryotic organisms, ciliates are generally the most abundant. In the present study, we used Illumina DNA sequencing to survey the eukaryotic communities, especially ciliates, inhabiting the tanks of the bromeliads Aechmea gamosepala and Vriesea platynema in the Atlantic Forest of southern Brazil. Filtered sequences were clustered into distinct OTUs using a 99% identity threshold, and then assigned to phylum and genus using a BLAST-based approach (implemented in QIIME) and the SILVA reference database. Both bromeliad species harbored very diverse eukaryotic communities, with Arthropoda and Ciliophora showing the highest abundance (as estimated by the number of sequence reads). The ciliate genus Tetrahymena was the most abundant among single-celled organisms, followed by apicomplexan gregarines and the ciliate genus Glaucoma. Another interesting finding was the presence and high abundance of Trypanosoma in these bromeliad tanks, demonstrating their occurrence in this type of environment. The results presented here demonstrate a hidden diversity of eukaryotes in bromeliad tank waters, opening up new avenues for their in-depth characterization.


Subject(s)
Biodiversity , Bromeliaceae , Ciliophora/physiology , Brazil , Ciliophora/classification , Ciliophora/genetics , DNA, Protozoan/genetics , Forests , Water/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL