Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
Homeopathy ; 112(1): 40-49, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35988582

ABSTRACT

INTRODUCTION: The use of mesenchymal stem cells (MSC) in cytotoxicity tests is an in-vitro alternative model for predicting initial doses. Homeopathic medicines may stimulate the immune system to combat a pathology effectively and have been used for over two centuries. Viscum album (VA) extracts are widely used in the treatment of cancer, due to their immunomodulatory, cytotoxic and pro-apoptotic properties. OBJECTIVE: This study aimed to evaluate the in-vitro growth kinetics of canine MSC in relation to cytotoxicity, cell differentiation and expression of pluripotentiality markers, using a VA preparation at the D1D2 (1×10-1, 1×10-2 potency (VAD1D2). METHODS: MSC were obtained from adipose tissue sampled from a healthy dog that was undergoing an elective veterinary procedure and with its owner's permission. The experiments were performed in three groups: MSC treated with VAD1D2 or diluent or untreated (control). The cytotoxicity was evaluated by MTT assay. The differentiation was induced in three lineages, and apoptotic cell labeling was performed by an Annexin-V test. RESULTS: At the concentration of 10 µL/mL of VA, the number of cells after in-vitro culture was maintained when compared with the control (untreated) group. A significant and gradual decrease in cell viability was recorded as VA concentrations increased. The apoptosis analysis showed that VA at 20 µL/mL presented absolute percentages of initial apoptosis twice as high as at 10 µL/mL, which was similar to the control (untreated group). CONCLUSION: The results suggest that the use of efficient methods to assess the in-vitro cytotoxicity of VA-based homeopathic medicines using MSC lineages may predict the potential action at different concentrations. These findings demonstrated that VAD1D2 interferes with canine MSC growth kinetics.


Subject(s)
Homeopathy , Mesenchymal Stem Cells , Viscum album , Animals , Dogs , Plant Extracts/pharmacology , Kinetics
2.
Int J Mol Sci ; 21(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371208

ABSTRACT

Inflammation is a common feature of several diseases, including obesity, diabetes and neurodegenerative disorders. Circadian clock genes are expressed and oscillate in many cell types such as macrophages, neurons and pancreatic ß cells. During inflammation, these endogenous clocks control the temporal gating of cytokine production, the antioxidant response, chemokine attraction and insulin secretion, among other processes. Deletion of clock genes in macrophages or brain-resident cells induces a higher production of inflammatory cytokines and chemokines, and this is often accompanied by an increased oxidative stress. In the context of obesity and diabetes, a high-fat diet disrupts the function of clock genes in macrophages and in pancreatic ß cells, contributing to inflammation and systemic insulin resistance. Recently, it has been shown that the administration of natural and synthetic ligands or pharmacological enhancers of the circadian clock function can selectively regulate the production and release of pro-inflammatory cytokines and improve the metabolic function in vitro and in vivo. Thus, a better understanding of the circadian regulation of the immune system could have important implications for the management of metabolic and neurodegenerative diseases.


Subject(s)
CLOCK Proteins/genetics , Circadian Clocks , Diabetes Mellitus/pathology , Immune System/immunology , Inflammation/immunology , Neurodegenerative Diseases/pathology , Obesity/pathology , Animals , Diabetes Mellitus/etiology , Humans , Inflammation/physiopathology , Neurodegenerative Diseases/etiology , Obesity/etiology
3.
Int J Sports Med ; 39(9): 704-711, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29945271

ABSTRACT

Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor (Chk2 and p53, respectively), shelterin telomere repeat binding 1 and 2 (Trf1/Trf2), DNA repair (Xrcc5), telomerase reverse transcriptase (mTERT) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training.


Subject(s)
Anaerobic Threshold/physiology , Checkpoint Kinase 2/genetics , Gene Expression , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/methods , Telomere Shortening/physiology , Telomeric Repeat Binding Protein 2/genetics , Tumor Suppressor Protein p53/genetics , Aging/genetics , Aging/metabolism , Animals , Apoptosis , Biomarkers/metabolism , DNA Repair , Lactic Acid/blood , Mice, Inbred C57BL , Swimming/physiology , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism
4.
Cell Biochem Funct ; 33(7): 435-42, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26467261

ABSTRACT

Type 2 diabetes mellitus (T2D) results in several metabolic and cardiovascular dysfunctions, clinically characterized by hyperglycaemia due to lower glucose uptake and oxidation. Physical exercise is an effective intervention for glycaemic control. However, the effects of exercising at different intensities have not yet been addressed. The present study analysed the effects of 8 weeks of training performed at different exercise intensities on type 4 glucose transporters (GLUT4) content and glycaemic control of T2D (ob/ob) and non-diabetic mice (ob/OB). The animals were divided into six groups, with four groups being subjected either to low-intensity (ob/obL and ob/OBL: 3% body weight, three times/week/40 min) or high-intensity (ob/obH and ob/OBH: 6% body weight, three times per week per 20 min) swimming training. An incremental swimming test was performed to measure aerobic fitness. After the training intervention period, glycaemia and the content of GLUT4 were quantified. Although both training intensities were beneficial, the high-intensity regimen induced a more significant improvement in GLUT4 levels and glycaemic profile compared with sedentary controls (p < 0.05). Only animals in the high-intensity exercise group improved aerobic fitness. Thus, our study shows that high-intensity training was more effective for increasing GLUT4 content and glycaemia reduction in insulin-resistant mice, perhaps because of a higher metabolic demand imposed by this form of exercise.


Subject(s)
Diabetes Mellitus, Type 2/therapy , Exercise Therapy , Glucose Transporter Type 4/metabolism , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/physiopathology , Disease Models, Animal , Fasting/blood , Insulin Resistance , Mice , Mice, Inbred C57BL , Mice, Obese
5.
Aust Endod J ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963178

ABSTRACT

To evaluate the effects of the association of host defence peptide IDR-1002 and ciprofloxacin on human dental pulp cells (hDPSCs). hDPSCs were stimulated with ciprofloxacin and IDR-1002. Cell viability (by MTT assay), migration capacity (by scratch assay), production of inflammatory and anti-inflammatory mediators by hDPSCs (RT-PCR) and osteogenic differentiation (alizarin red staining) were evaluated. Phenotypic profile of hDPSCs demonstrated 97% for positive marked mesenchymal stem cell. Increased pulp cell migration and proliferation were observed after 24 and 48 h of exposure to IDR-1002 with ciprofloxacin. Mineral matrix formation by hDPSCs was observed of the association while its reduction was observed in the presence of peptide. After 24 h, the association between ciprofloxacin and IDR-1002 significantly downregulated TNFRSF-1, IL-1ß, IL-8, IL-6 and IL-10 gene expression (p ≤ 0.0001). The association between the IDR-1002 and ciprofloxacin showed favourable immunomodulatory potential, emerging as a promising option for pulp revascularisation processes.

6.
J Nutr Biochem ; 134: 109747, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39197728

ABSTRACT

Although previous studies demonstrated that the ancestral lifestyle can enhance the metabolic health of offspring exposed to an obesogenic diet, the specific connections between these positive effects in redox state and telomere length are unknown. We investigated the impact of paternal resistance training (RT) on stress-responsive signaling and the pathways involved in telomere homeostasis in skeletal muscle. This investigation encompassed both the fathers and first-generation litter exposed to a long-term standard diet (24 weeks) and high fat diet (HFD). Wistar rats were randomized into sedentary or trained fathers (8 weeks of resistance training). The offspring were obtained by mating with sedentary females. Upon weaning, male offspring were divided into four groups: offspring of sedentary or trained fathers exposed to either a control diet or HFD. The gastrocnemius was prepared for reverse transcription-quantitative polymerase chain reaction, immunoblotting, ELISA, and electron paramagnetic resonance spectroscopy. RT upregulated shelterin mRNA levels and antioxidant protein, preserving muscle telomere in fathers. Conversely, HFD induced a disturbance in the redox balance, which may have contributed to the offspring telomere shortening from sedentary fathers. Preconceptional paternal RT downregulates Kelch-like ECH-associated protein 1 (Keap1) mRNA levels in the skeletal muscle of progeny exposed to HFD, driving an increase in Glutathione reductase mRNA levels, Sod1 and Catalase protein levels to mitigate ROS production. Also, paternal exercise upregulates α-Klotho protein levels, mediating antioxidative responses without altering shelterin mRNA levels and telomere length. We provide the first in-depth analysis that the offspring's redox state seems to be directly associated with the beneficial effects of paternal exercise.

7.
J Fungi (Basel) ; 9(2)2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36836338

ABSTRACT

Chromoblastomycosis (CBM) is a disease caused by several dematiaceous fungi from different genera, and Fonsecaea is the most common which has been clinically isolated. Genetic transformation methods have recently been described; however, molecular tools for the functional study of genes have been scarcely reported for those fungi. In this work, we demonstrated that gene deletion and generation of the null mutant by homologous recombination are achievable for Fonsecaea pedrosoi by the use of two approaches: use of double-joint PCR for cassette construction, followed by delivery of the split-marker by biolistic transformation. Through in silico analyses, we identified that F. pedrosoi presents the complete enzymatic apparatus required for tryptophan (trp) biosynthesis. The gene encoding a tryptophan synthase trpB -which converts chorismate to trp-was disrupted. The ΔtrpB auxotrophic mutant can grow with external trp supply, but germination, viability of conidia, and radial growth are defective compared to the wild-type and reconstituted strains. The use of 5-FAA for selection of trp- phenotypes and for counter-selection of strains carrying the trp gene was also demonstrated. The molecular tools for the functional study of genes, allied to the genetic information from genomic databases, significantly boost our understanding of the biology and pathogenicity of CBM causative agents.

8.
Front Vet Sci ; 10: 1215722, 2023.
Article in English | MEDLINE | ID: mdl-37496752

ABSTRACT

Introduction: The aim of this study was to evaluate potential effects of diflubenzuron on the production and quality of gametes, and on in vitro embryo production (IVEP) outcomes, in cattle. Methods: Two experiments were performed, the first to evaluate effects on semen, and the second on cumulus-oocyte complexes (COC) and on IVEP. Nelore (Bos taurus indicus) bulls (n = 14) or heifers (n = 16) were allocated into control (CG) or treatment (DIF) groups. All groups received a mineral mix supplement added (DIF) or not (CG) with diflubenzuron (30 mg/head/day), during 8 weeks. Animals were weighed and blood samples were collected throughout the experimental period. Every other week, bulls were subjected to semen collection and heifers to transvaginal ultrasound-guided follicle aspiration sessions. Semen underwent physical and morphological evaluation, and samples were stored for further computer-assisted sperm analysis. The COC recovered were evaluated according to morphology and those classified as viable were sent to an IVEP laboratory. Results: Diflubenzuron had no effect (P > 0.05) on average body weight or in any blood hematological or biochemical endpoints, regardless of gender. In experiment 1, there was no difference (P > 0.05) between DIF and CG groups for sperm concentration, morphology, or kinetics. In experiment 2, there was also no effect of diflubenzuron on the number of total, viable, or grade I oocytes, as well as on cleavage or blastocyst rates (P > 0.05). Discussion: In summary, the oral administration of diflubenzuron, within the recommended dose, has no short-term negative effects on sperm production and quality or on oocyte yield and developmental potential in vitro, in cattle.

9.
BMC Microbiol ; 10: 241, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20843362

ABSTRACT

BACKGROUND: Phospholipase B (PLB) has been reported to be one of the virulence factors for human pathogenic fungi and has also been described as necessary for the early events in infection. Based on these data, we investigated the role of PLB in virulence and modulation of the alveolar pulmonary immune response during infection using an in-vitro model of host-pathogen interaction, i.e. Paracoccidioides brasiliensis yeast cells infecting alveolar macrophage (MH-S) cells. RESULTS: The effect of PLB was analyzed using the specific inhibitor alexidine dihydrochloride (0.25 µM), and pulmonary surfactant (100 µg mL-1), during 6 hours of co-cultivation of P. brasiliensis and MH-S cells. Alexidine dihydrochloride inhibited PLB activity by 66% and significantly decreased the adhesion and internalization of yeast cells by MH-S cells. Genes involved in phagocytosis (trl2, cd14) and the inflammatory response (nfkb, tnf-α, il-1ß) were down-regulated in the presence of this PLB inhibitor. In contrast, PLB activity and internalization of yeast cells significantly increased in the presence of pulmonary surfactant; under this condition, genes such as clec2 and the pro-inflammatory inhibitor (nkrf) were up-regulated. Also, the pulmonary surfactant did not alter cytokine production, while alexidine dihydrochloride decreased the levels of interleukin-10 (IL-10) and increased the levels of IL-12 and tumor necrosis factor-α (TNF-α). In addition, gene expression analysis of plb1, sod3 and icl1 suggests that P. brasiliensis gene re-programming is effective in facilitating adaptation to this inhospitable environment, which mimics the lung-environment interaction. CONCLUSION: P. brasiliensis PLB activity is involved in the process of adhesion and internalization of yeast cells at the MH-S cell surface and may enhance virulence and subsequent down-regulation of macrophage activation.


Subject(s)
Extracellular Space/enzymology , Fungal Proteins/metabolism , Host-Pathogen Interactions , Lysophospholipase/metabolism , Macrophages, Alveolar/microbiology , Paracoccidioides/enzymology , Paracoccidioidomycosis/microbiology , Animals , Bacterial Adhesion , Cell Line , Cytokines/genetics , Cytokines/immunology , Extracellular Space/genetics , Fungal Proteins/genetics , Humans , Lysophospholipase/genetics , Macrophages, Alveolar/immunology , Mice , Paracoccidioides/genetics , Paracoccidioides/immunology , Paracoccidioides/physiology , Paracoccidioidomycosis/genetics , Paracoccidioidomycosis/immunology
10.
11.
Sports Med ; 47(2): 277-293, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27260682

ABSTRACT

BACKGROUND: Physical activity has been associated with reduced oxidative stress (OS) in observational studies and clinical trials. OBJECTIVE: The purpose of this systematic review and meta-analysis of controlled trials was to determine the effect of physical exercise on OS parameters. METHODS: We conducted a systematic review of the literature up to March 2016 that included the following databases: PubMed, SCOPUS, and Web of Science. A keyword combination referring to exercise training and OS was included as part of a more thorough search process. We also manually searched the reference lists of the articles. From an initial 1573 references, we included 30 controlled trials (1346 participants) in the qualitative analysis, 19 of which were included in the meta-analysis. All trials were conducted in humans and had at least one exercise intervention and a paired control group. Using a standardized protocol, two investigators independently abstracted data on study design, sample size, participant characteristics, intervention, follow-up duration, outcomes, and quantitative data for the meta-analysis. Thus, the investigators independently assigned quality scores with a methodological quality assessment (MQA). RESULTS: The agreement level between the reviewers was 85.3 %. Discrepancies were solved in a consensus meeting. The MQA showed a total score in the quality index between 40 and 90 % and a mean quality of 55 %. Further, in a random-effects model, data from each trial were pooled and weighted by the inverse of the total variance. Physical training was associated with a significant reduction in pro-oxidant parameters (standard mean difference [SMD] -1.08; 95 % confidence interval [CI] -1.57 to -0.58; p < 0.001) and an increase in antioxidant capacity (SMD 1.45; 95 % CI 0.83-2.06; p < 0.001). CONCLUSION: The pooled analysis revealed that regardless of intensity, volume, type of exercise, and studied population, the antioxidant indicators tended to increase and pro-oxidant indicators tended to decrease after training. Therefore, we conclude that exercise training seems to induce an antioxidant effect. Thus, it is suggested that people practice some kind of exercise to balance the redox state, regardless of their health status, to improve health-related outcomes.


Subject(s)
Antioxidants , Exercise/physiology , Health Status , Oxidative Stress/physiology , Exercise Therapy , Humans , Quality of Life , Randomized Controlled Trials as Topic
12.
Sci Rep ; 7(1): 8593, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819168

ABSTRACT

Sarcopenia is a complex multifactorial process, some of which involves fat infiltration. Intramyocellular lipid (IMCL) accumulation is postulated to play a role on sarcopenia during aging, which is believed to be due alterations in glucose homeostasis in the skeletal muscle. Sarcopenia, along with intramuscular lipids, is associated with physical inactivity. Resistance training (RT) has been indicated to minimize the age-induced muscle skeletal adaptations. Thus, we aimed to investigate the effects of RT on mRNA levels of regulatory components related to intramyocellular lipid, glucose metabolism and fiber size in soleus and gastrocnemius muscles of aged rats. Old male rats were submitted to RT (ladder climbing, progressive load, 3 times a week for 12 weeks). Age-induced accumulation of IMCL was attenuated by RT, which was linked to a PPARy-mediated mechanism, concomitant to enhanced regulatory components of glucose homeostasis (GLUT-4, G6PDH, Hk-2 and Gly-Syn-1). These responses were also linked to decreased catabolic (TNF-α, TWEAK/Fn14 axis; FOXO-1, Atrogin-1 and MuRF1; Myostatin) and increased anabolic intracellular pathways (IGF-1-mTOR-p70S6sk-1 axis; MyoD) in muscles of trained aged rats. Our results point out the importance of RT on modulation of gene expression of intracellular regulators related to age-induced morphological and metabolic adaptations in skeletal muscle.


Subject(s)
Aging/genetics , Cell Size , Gene Expression Regulation , Glucose/metabolism , Lipids/chemistry , Muscle Fibers, Skeletal/cytology , Resistance Training , Adipogenesis/genetics , Animals , Body Weight , Hypertrophy , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Signal Transduction
13.
Anticancer Res ; 36(9): 4545-51, 2016 09.
Article in English | MEDLINE | ID: mdl-27630294

ABSTRACT

BACKGROUND/AIM: Nodular and superficial are the most common subtypes of basal cell carcinoma (BCC). Signaling pathways such as Hedgehog (HH) and Wingless (WNT) signaling are associated with BCC phenotypic variation. The aim of the study was to evaluate of the expression profiles of 84 genes related to the WNT and HH signaling pathways in patients with nodular and superficial BCC. MATERIALS AND METHODS: A total of 58 BCCs and 13 samples of normal skin were evaluated by quantitative real-time polymerase chain reaction (qPCR) to detect the gene-expression profile. RESULTS: qPCR array showed segregation in BCC subtypes compared to healthy skin. PRKX, WNT3 and WNT16 were significantly (p<0.05) altered: PRKX was up-regulated, and WNT3 and WNT16 were down-regulated in nodular BCC. CONCLUSION: PRKX, WNT3 and WNT16 genes, belonging to the WNT signaling pathway, are involved in the tumorigenic process of nodular BCC.


Subject(s)
Carcinoma, Basal Cell/metabolism , Gene Expression Regulation, Neoplastic , Protein Serine-Threonine Kinases/metabolism , Skin Neoplasms/metabolism , Wnt Proteins/metabolism , Wnt3 Protein/metabolism , Aged , Aged, 80 and over , Cell Proliferation , Cluster Analysis , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Phenotype , Real-Time Polymerase Chain Reaction , Signal Transduction , Skin/metabolism , Up-Regulation
14.
Photodiagnosis Photodyn Ther ; 11(1): 41-7, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24184796

ABSTRACT

BACKGROUND: The current study was devised with the objective of using a split-mouth, controlled clinical trial to compare conventional mechanical debridement (scaling and root planing) treatment (T1) with conventional mechanical treatment followed by photodynamic therapy (PDT) (T2) in patients with severe periodontitis. METHODS: Four PDT sessions were completed, and clinical parameters such as bleeding upon probing (BOP positive), plaque index (PI), probing pocket depth (PPD) and clinical attachment loss (CAL) were evaluated before and after the treatment series. In addition, gingival biopsies were collected at the start and finish of treatment, and were used for qPCR gene expression analysis of TNFA, IL1B, IL8, IL10, IL17, MMP13, FGF2, RANK, RANKL and OPG. RESULTS: The clinical results showed a significant improvement in BOP with treatment T2 (p=0.03). The molecular data showed an up-regulation of FGF2, RANK and OPG gene expression after T2. The expression levels of the other genes were not significantly different between T1 and T2. PDT increased the expression of RANK and OPG, which could indicate a reduction in osteoclastogenesis. Furthermore, the use of PDT in conjunction with conventional treatment significantly increased the expression of FGF2, which has an important role in the periodontal repair process. CONCLUSIONS: PDT technology could be a means to improve conventional periodontitis treatment. Our results suggest that PDT acts in part by controlling bone resorption and increasing the expression of genes important for tissue repair.


Subject(s)
Gene Expression/drug effects , Gingiva/drug effects , Inflammation Mediators/metabolism , Photochemotherapy/methods , Adult , Dental Plaque Index , Dental Scaling , Female , Humans , Male , Periodontal Index , Root Planing/methods , Up-Regulation
15.
Einstein (Sao Paulo) ; 12(2): 256-8, 2014 Apr.
Article in English, Portuguese | MEDLINE | ID: mdl-25003938

ABSTRACT

Colorectal cancer is the third most common cancer worldwide. Survival and prognosis depend on tumor stage upon diagnosis, and in more than 50% of cases, the tumor has already invaded adjacent tissues or metastasis has occurred. Aiming to improve diagnosis, clinical prognosis and treatment of patients with colorectal cancer, several studies have investigated microRNAs as molecular markers of the disease due to their potential regulatory functions on tumor suppressor genes and oncogenes. This review aimed to summarize the main topics related to the use of microRNAs in diagnosis, clinical prognosis and evaluating treatment response in colorectal cancer.


Subject(s)
Colorectal Neoplasms/genetics , MicroRNAs/metabolism , Antineoplastic Agents/therapeutic use , Capecitabine , Chemoradiotherapy, Adjuvant , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Deoxycytidine/analogs & derivatives , Deoxycytidine/therapeutic use , Fluorouracil/analogs & derivatives , Fluorouracil/therapeutic use , Gene Expression Regulation, Neoplastic , Genetic Markers , Humans , Neoplasm Invasiveness/genetics , Neoplasm Staging , Organoplatinum Compounds/therapeutic use , Oxaliplatin , Prognosis , Resveratrol , Stilbenes/therapeutic use
16.
Int J Oncol ; 43(2): 653-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23754336

ABSTRACT

The histone lysine methyltransferases contain a SET domain, which catalyzes the addition of methyl groups to specific lysine residues. The MLL family of genes encodes histone-modifying enzymes with histone 3-lysine 4 methyltransferase activity that can regulate gene transcription. The MLL family exists in multi-protein complexes and has been implicated in a variety of processes including normal development and cell growth. Although some of the MLL family members have already been described to be involved in cancer, a clear relationship of these genes with breast cancer is not determined to date. In the present study, we used quantitative PCR to investigate the expression profile of all five MLL genes [MLL (ALL-1), MLL2, MLL3, MLL4 and MLL5] in 7 breast cancer cell lines, 8 breast tumors and adjacent non-tumor tissues and in 12 normal tissues. We observed a diminished expression of all five genes in the breast cancer cell lines when compared to normal breast tissue. We found a significantly decreased expression of MLL2 in the tumor samples compared to the non-tumor controls. In tumor samples, MLL5 also showed a clear suppression tendency. Among the normal tissues analyzed, all genes showed a markedly higher expression in skeletal muscle and brain. Although further studies are required to determine the exact role of these methyltransferases in cancer development, our results indicate that the suppression of MLL genes, especially MLL2 and 5, take part in modulating breast carcinogenesis. Our assessment of the MLL family gene expression patterns in a diverse set of breast cancer cell lines and in a multitude of tissue types and breast tumors should lead to increasingly detailed information on the involvement of these genes in cancer progression.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carcinogenesis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Neoplastic , Methyltransferases/genetics , Neoplasm Proteins/genetics , Cell Line, Tumor , Cell Proliferation , Female , Humans , MCF-7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL