Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(5): e2312898121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38277436

ABSTRACT

Perceptual decision-making is highly dependent on the momentary arousal state of the brain, which fluctuates over time on a scale of hours, minutes, and even seconds. The textbook relationship between momentary arousal and task performance is captured by an inverted U-shape, as put forward in the Yerkes-Dodson law. This law suggests optimal performance at moderate levels of arousal and impaired performance at low or high arousal levels. However, despite its popularity, the evidence for this relationship in humans is mixed at best. Here, we use pupil-indexed arousal and performance data from various perceptual decision-making tasks to provide converging evidence for the inverted U-shaped relationship between spontaneous arousal fluctuations and performance across different decision types (discrimination, detection) and sensory modalities (visual, auditory). To further understand this relationship, we built a neurobiologically plausible mechanistic model and show that it is possible to reproduce our findings by incorporating two types of interneurons that are both modulated by an arousal signal. The model architecture produces two dynamical regimes under the influence of arousal: one regime in which performance increases with arousal and another regime in which performance decreases with arousal, together forming an inverted U-shaped arousal-performance relationship. We conclude that the inverted U-shaped arousal-performance relationship is a general and robust property of sensory processing. It might be brought about by the influence of arousal on two types of interneurons that together act as a disinhibitory pathway for the neural populations that encode the available sensory evidence used for the decision.


Subject(s)
Arousal , Brain , Humans , Arousal/physiology , Task Performance and Analysis , Pupil/physiology , Sensation
2.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-39029953

ABSTRACT

Perceptual decisions are often accompanied by a feeling of decision confidence. Where the parietal cortex is known for its crucial role in shaping such perceptual decisions, metacognitive evaluations are thought to additionally rely on the (pre)frontal cortex. Because of this supposed neural differentiation between these processes, perceptual and metacognitive decisions may be divergently affected by changes in internal (e.g., attention, arousal) and external (e.g., task and environmental demands) factors. Although intriguing, causal evidence for this hypothesis remains scarce. Here, we investigated the causal effect of two neuromodulatory systems on behavioral and neural measures of perceptual and metacognitive decision-making. Specifically, we pharmacologically elevated levels of catecholamines (with atomoxetine) and acetylcholine (with donepezil) in healthy adult human participants performing a visual discrimination task in which we gauged decision confidence, while electroencephalography was measured. Where cholinergic effects were not robust, catecholaminergic enhancement improved perceptual sensitivity, while at the same time leaving metacognitive sensitivity unaffected. Neurally, catecholaminergic elevation did not affect sensory representations of task-relevant visual stimuli but instead enhanced well-known decision signals measured over the centroparietal cortex, reflecting the accumulation of sensory evidence over time. Crucially, catecholaminergic enhancement concurrently impoverished neural markers measured over the frontal cortex linked to the formation of metacognitive evaluations. Enhanced catecholaminergic neuromodulation thus improves perceptual but not metacognitive decision-making.


Subject(s)
Atomoxetine Hydrochloride , Catecholamines , Decision Making , Electroencephalography , Metacognition , Humans , Male , Female , Decision Making/physiology , Decision Making/drug effects , Metacognition/physiology , Adult , Young Adult , Catecholamines/metabolism , Atomoxetine Hydrochloride/pharmacology , Visual Perception/physiology , Visual Perception/drug effects , Adrenergic Uptake Inhibitors/pharmacology , Acetylcholine/metabolism
3.
Curr Biol ; 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151432

ABSTRACT

Arousal and motivation interact to profoundly influence behavior. For example, experience tells us that we have some capacity to control our arousal when appropriately motivated, such as staying awake while driving a motor vehicle. However, little is known about how arousal and motivation jointly influence decision computations, including if and how animals, such as rodents, adapt their arousal state to their needs. Here, we developed and show results from an auditory, feature-based, sustained-attention task with intermittently shifting task utility. We use pupil size to estimate arousal across a wide range of states and apply tailored signal-detection theoretic, hazard function, and accumulation-to-bound modeling approaches in a large cohort of mice. We find that pupil-linked arousal and task utility both have major impacts on multiple aspects of task performance. Although substantial arousal fluctuations persist across utility conditions, mice partially stabilize their arousal near an intermediate and optimal level when task utility is high. Behavioral analyses show that multiple elements of behavior improve during high task utility and that arousal influences some, but not all, of them. Specifically, arousal influences the likelihood and timescale of sensory evidence accumulation but not the quantity of evidence accumulated per time step while attending. In sum, the results establish specific decision-computational signatures of arousal, motivation, and their interaction in attention. So doing, we provide an experimental and analysis framework for studying arousal self-regulation in neurotypical brains and in diseases such as attention-deficit/hyperactivity disorder.

SELECTION OF CITATIONS
SEARCH DETAIL