Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Curr Opin Crit Care ; 30(4): 298-304, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38841995

ABSTRACT

PURPOSE OF REVIEW: Vitamin C can be a potential adjunctive treatment option for critically ill individuals due to its pleiotropic effects as electron donor in many enzymatic reactions throughout the body. Recently, several important randomized controlled trials (RCTs) investigating vitamin C in critically ill patients have been published. RECENT FINDINGS: Two recent large RCTs administering high-dose vitamin C to patients with sepsis and COVID-19 showed signs of harm. Though performed at high standard, these trials had several limitations. Recent studies in cardiac surgery and burns showed decreased cardiac enzymes and improved clinical outcomes after cardiac surgery, and decreased fluid requirements, reduced wound healing time and in-hospital mortality after burns. Vitamin C may hold benefit in the management of other ischemia/reperfusion injury populations, including postcardiac arrest patients and after solid organ transplantation. Currently, covering basal vitamin C requirements during critical illness is recommended, though the exact dose remains to be determined. SUMMARY: Future work should address optimal vitamin C timing, since early versus late drug administration are likely distinct, and duration of therapy, where withdrawal-induced injury is possible. Additionally accurate assessment of body stores with determination of individual vitamin requirements is crucial to ascertain patient and subgroups most likely to benefit from vitamin C.


Subject(s)
Ascorbic Acid , COVID-19 , Critical Illness , Humans , Ascorbic Acid/therapeutic use , SARS-CoV-2 , Sepsis/drug therapy , Randomized Controlled Trials as Topic , Vitamins/therapeutic use , Critical Care/methods , Antioxidants/therapeutic use
2.
Curr Opin Crit Care ; 30(2): 178-185, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38441190

ABSTRACT

PURPOSE OF REVIEW: Recent large-scale randomized controlled trials (RCTs) challenged current beliefs about the potential role of micronutrients to attenuate the inflammatory response and improve clinical outcomes of critically ill patients. The purpose of this narrative review is to provide an overview and critical discussion about most recent clinical trials, which evaluated the clinical significance of a vitamin C, vitamin D, or selenium administration in critically ill patients. RECENT FINDINGS: None of the most recent large-scale RCTs could demonstrate any clinical benefits for a micronutrient administration in ICU patients, whereas a recent RCT indicated harmful effects, if high dose vitamin C was administered in septic patients. Following meta-analyses could not confirm harmful effects for high dose vitamin C in general critically ill patients and indicated benefits in the subgroup of general ICU patients with higher mortality risk. For vitamin D, the most recent large-scale RCT could not demonstrate clinical benefits for critically ill patients, whereas another large-scale RCT is still ongoing. The aggregated and meta-analyzed evidence highlighted a potential role for intravenous vitamin D administration, which encourages further research. In high-risk cardiac surgery patients, a perioperative application of high-dose selenium was unable to improve patients' outcome. The observed increase of selenium levels in the patients' blood did not translate into an increase of antioxidative or anti-inflammatory enzymes, which illuminates the urgent need for more research to identify potential confounding factors. SUMMARY: Current data received from most recent large-scale RCTs could not demonstrate clinically meaningful effects of an intervention with either vitamin C, vitamin D, or selenium in critically ill patients. More attention is needed to carefully identify potential confounding factors and to better evaluate the role of timing, duration, and combined strategies.


Subject(s)
Micronutrients , Selenium , Humans , Micronutrients/therapeutic use , Selenium/therapeutic use , Critical Illness/therapy , Vitamins , Vitamin D/therapeutic use , Ascorbic Acid/therapeutic use
3.
BMC Pulm Med ; 24(1): 140, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38504249

ABSTRACT

BACKGROUND: In the early literature, unintentional vitamin C deficiency in humans was associated with heart failure. Experimental vitamin C deficiency in guinea pigs caused enlargement of the heart. The purpose of this study was to collect and analyze case reports on vitamin C and pulmonary hypertension. METHODS: We searched Pubmed and Scopus for case studies in which vitamin C deficiency was considered to be the cause of pulmonary hypertension. We selected reports in which pulmonary hypertension was diagnosed by echocardiography or catheterization, for any age, sex, or dosage of vitamin C. We extracted quantitative data for our analysis. We used the mean pulmonary artery pressure (mPAP) as the outcome of primary interest. RESULTS: We identified 32 case reports, 21 of which were published in the last 5 years. Dyspnea was reported in 69%, edema in 53% and fatigue in 28% of the patients. Vitamin C plasma levels, measured in 27 cases, were undetectable in 24 and very low in 3 cases. Diet was poor in 30 cases and 17 cases had neuropsychiatric disorders. Right ventricular enlargement was reported in 24 cases. During periods of vitamin C deficiency, the median mPAP was 48 mmHg (range 29-77 mmHg; N = 28). After the start of vitamin C administration, the median mPAP was 20 mmHg (range 12-33 mmHg; N = 18). For the latter 18 cases, mPAP was 2.4-fold (median) higher during vitamin C deficiency. Pulmonary vascular resistance (PVR) during vitamin C deficiency was reported for 9 cases, ranging from 4.1 to 41 Wood units. PVR was 9-fold (median; N = 5) higher during vitamin C deficiency than during vitamin C administration. In 8 cases, there was direct evidence that the cases were pulmonary artery hypertension (PAH). Probably the majority of the remaining cases were also PAH. CONCLUSIONS: The cases analyzed in our study indicate that pulmonary hypertension can be one explanation for the reported heart failure of scurvy patients in the early literature. It would seem sensible to measure plasma vitamin C levels of patients with PH and examine the effects of vitamin C administration.


Subject(s)
Ascorbic Acid Deficiency , Heart Failure , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Scurvy , Humans , Animals , Guinea Pigs , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/diagnosis , Scurvy/complications , Pulmonary Arterial Hypertension/complications , Vascular Resistance , Ascorbic Acid Deficiency/complications , Ascorbic Acid/therapeutic use
4.
Anesthesiology ; 138(3): 274-288, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36520507

ABSTRACT

BACKGROUND: Monitoring and controlling lung stress and diaphragm effort has been hypothesized to limit lung injury and diaphragm injury. The occluded inspiratory airway pressure (Pocc) and the airway occlusion pressure at 100 ms (P0.1) have been used as noninvasive methods to assess lung stress and respiratory muscle effort, but comparative performance of these measures and their correlation to diaphragm effort is unknown. The authors hypothesized that Pocc and P0.1 correlate with diaphragm effort and lung stress and would have strong discriminative performance in identifying extremes of lung stress and diaphragm effort. METHODS: Change in transdiaphragmatic pressure and transpulmonary pressure was obtained with double-balloon nasogastric catheters in critically ill patients (n = 38). Pocc and P0.1 were measured every 1 to 3 h. Correlations between Pocc and P0.1 with change in transdiaphragmatic pressure and transpulmonary pressure were computed from patients from the first cohort. Accuracy of Pocc and P0.1 to identify patients with extremes of lung stress (change in transpulmonary pressure > 20 cm H2O) and diaphragm effort (change in transdiaphragmatic pressure < 3 cm H2O and >12 cm H2O) in the preceding hour was assessed with area under receiver operating characteristic curves. Cutoffs were validated in patients from the second cohort (n = 13). RESULTS: Pocc and P0.1 correlate with change in transpulmonary pressure (R2 = 0.62 and 0.51, respectively) and change in transdiaphragmatic pressure (R2 = 0.53 and 0.22, respectively). Area under receiver operating characteristic curves to detect high lung stress is 0.90 (0.86 to 0.94) for Pocc and 0.88 (0.84 to 0.92) for P0.1. Area under receiver operating characteristic curves to detect low diaphragm effort is 0.97 (0.87 to 1.00) for Pocc and 0.93 (0.81 to 0.99) for P0.1. Area under receiver operating characteristic curves to detect high diaphragm effort is 0.86 (0.81 to 0.91) for Pocc and 0.73 (0.66 to 0.79) for P0.1. Performance was similar in the external dataset. CONCLUSIONS: Pocc and P0.1 correlate with lung stress and diaphragm effort in the preceding hour. Diagnostic performance of Pocc and P0.1 to detect extremes in these parameters is reasonable to excellent. Pocc is more accurate in detecting high diaphragm effort.


Subject(s)
Diaphragm , Respiration, Artificial , Humans , Diaphragm/physiology , Respiration, Artificial/methods , Critical Illness , Respiratory Muscles , Lung
5.
BMC Cardiovasc Disord ; 23(1): 475, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735625

ABSTRACT

BACKGROUND: Ischemia/reperfusion injury contributes to periprocedural myocardial injury (PMI) in patients undergoing percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG). PMI can be estimated by the elevation of troponin (Tn) and creatine kinase-MB (CKMB) plasma levels, and it is associated with increased risk of cardiovascular events and mortality. Vitamin C might have a beneficial effect on PMI by improving endothelial function, improving myocardial perfusion, and by reducing oxidative stress generated during/after reperfusion. In several small animal models of cardiac stress, vitamin C reduced the increase in Tn and CKMB levels. The aim of this meta-analysis was to investigate whether vitamin C administration may have an effect on Tn and CKMB levels in patients undergoing PCI or CABG. METHODS: We searched PubMed, Cochrane, Embase and Scopus databases for controlled clinical trials reporting on Tn and CKMB levels in adult patients who underwent PCI or CABG and received vitamin C. As secondary outcomes we collected data on biomarkers of oxidative stress in the included trials. In our meta-analysis, we used the relative scale and estimated the effect as the ratio of means. RESULTS: We found seven controlled trials which included 872 patients. All included trials administered vitamin C intravenously, with a range from 1 to 16 g/day, and all initiated vitamin administration prior to the procedure. Vitamin C decreased peak Tn plasma levels in four trials on average by 43% (95% CI: 13 to 63%, p = 0.01) and peak CKMB plasma levels in five trials by 14% (95% CI: 8 to 21%, p < 0.001). Vitamin C also significantly decreased the biomarkers of oxidative stress. CONCLUSIONS: Vitamin C may decrease cardiac enzyme levels in patients undergoing elective PCI or CABG. This may be explained partially by its antioxidant effects. Our findings encourage further research on vitamin C administration during cardiac procedures and in other clinical contexts that increase the level of cardiac enzymes. Future studies should search for an optimal dosing regimen, taking baseline and follow-up plasma vitamin C levels into account.


Subject(s)
Heart Injuries , Percutaneous Coronary Intervention , Adult , Animals , Humans , Ascorbic Acid , Percutaneous Coronary Intervention/adverse effects , Vitamins , Coronary Artery Bypass/adverse effects , Heart , Creatine Kinase, MB Form
6.
JAMA ; 330(18): 1745-1759, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37877585

ABSTRACT

Importance: The efficacy of vitamin C for hospitalized patients with COVID-19 is uncertain. Objective: To determine whether vitamin C improves outcomes for patients with COVID-19. Design, Setting, and Participants: Two prospectively harmonized randomized clinical trials enrolled critically ill patients receiving organ support in intensive care units (90 sites) and patients who were not critically ill (40 sites) between July 23, 2020, and July 15, 2022, on 4 continents. Interventions: Patients were randomized to receive vitamin C administered intravenously or control (placebo or no vitamin C) every 6 hours for 96 hours (maximum of 16 doses). Main Outcomes and Measures: The primary outcome was a composite of organ support-free days defined as days alive and free of respiratory and cardiovascular organ support in the intensive care unit up to day 21 and survival to hospital discharge. Values ranged from -1 organ support-free days for patients experiencing in-hospital death to 22 organ support-free days for those who survived without needing organ support. The primary analysis used a bayesian cumulative logistic model. An odds ratio (OR) greater than 1 represented efficacy (improved survival, more organ support-free days, or both), an OR less than 1 represented harm, and an OR less than 1.2 represented futility. Results: Enrollment was terminated after statistical triggers for harm and futility were met. The trials had primary outcome data for 1568 critically ill patients (1037 in the vitamin C group and 531 in the control group; median age, 60 years [IQR, 50-70 years]; 35.9% were female) and 1022 patients who were not critically ill (456 in the vitamin C group and 566 in the control group; median age, 62 years [IQR, 51-72 years]; 39.6% were female). Among critically ill patients, the median number of organ support-free days was 7 (IQR, -1 to 17 days) for the vitamin C group vs 10 (IQR, -1 to 17 days) for the control group (adjusted proportional OR, 0.88 [95% credible interval {CrI}, 0.73 to 1.06]) and the posterior probabilities were 8.6% (efficacy), 91.4% (harm), and 99.9% (futility). Among patients who were not critically ill, the median number of organ support-free days was 22 (IQR, 18 to 22 days) for the vitamin C group vs 22 (IQR, 21 to 22 days) for the control group (adjusted proportional OR, 0.80 [95% CrI, 0.60 to 1.01]) and the posterior probabilities were 2.9% (efficacy), 97.1% (harm), and greater than 99.9% (futility). Among critically ill patients, survival to hospital discharge was 61.9% (642/1037) for the vitamin C group vs 64.6% (343/531) for the control group (adjusted OR, 0.92 [95% CrI, 0.73 to 1.17]) and the posterior probability was 24.0% for efficacy. Among patients who were not critically ill, survival to hospital discharge was 85.1% (388/456) for the vitamin C group vs 86.6% (490/566) for the control group (adjusted OR, 0.86 [95% CrI, 0.61 to 1.17]) and the posterior probability was 17.8% for efficacy. Conclusions and Relevance: In hospitalized patients with COVID-19, vitamin C had low probability of improving the primary composite outcome of organ support-free days and hospital survival. Trial Registration: ClinicalTrials.gov Identifiers: NCT04401150 (LOVIT-COVID) and NCT02735707 (REMAP-CAP).


Subject(s)
COVID-19 , Sepsis , Humans , Female , Middle Aged , Male , Ascorbic Acid/therapeutic use , Critical Illness/therapy , Critical Illness/mortality , Hospital Mortality , Bayes Theorem , Randomized Controlled Trials as Topic , Vitamins/therapeutic use , Sepsis/drug therapy
7.
Crit Care Med ; 50(2): 192-203, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35100192

ABSTRACT

OBJECTIVES: Lung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined "diaphragm-protective" range, without compromising lung-protective ventilation. DESIGN: Randomized clinical trial. SETTING: Mixed medical-surgical ICU in a tertiary academic hospital in the Netherlands. PATIENTS: Patients (n = 40) with respiratory failure ventilated in a partially-supported mode. INTERVENTIONS: In the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined "diaphragm-protective" range (3-12 cm H2O). The control group received standard-of-care. MEASUREMENTS AND MAIN RESULTS: Transdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within "diaphragm-protective" range compared with the control group (median 81%; interquartile range [64-86%] vs 35% [16-60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively. CONCLUSIONS: Titration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined "diaphragm-protective" range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes.


Subject(s)
Diaphragm/metabolism , Lung/metabolism , Respiration, Artificial/standards , Work of Breathing/physiology , Diaphragm/physiopathology , Female , Humans , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Lung/physiopathology , Male , Middle Aged , Netherlands/epidemiology , Respiration, Artificial/methods , Respiration, Artificial/statistics & numerical data , Respiratory Insufficiency/epidemiology , Respiratory Insufficiency/prevention & control , Respiratory Insufficiency/therapy , Work of Breathing/drug effects
8.
Vox Sang ; 117(1): 64-70, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34196412

ABSTRACT

BACKGROUND AND OBJECTIVES: Red blood cell (RBC) transfusion is a frequently applied intervention in an intensive care unit. However, transfusion is associated with adverse outcomes including organ failure and thrombo-embolic events. Mechanisms of these effects are not known but may be related to activation of the endothelium or of the coagulation or inflammatory system. We hypothesized that a RBC transfusion in the critically ill would result in further activation of these systems. MATERIALS AND METHODS: In 74 non-bleeding critically ill patients receiving one RBC unit, markers of inflammation, endothelial cell activation and coagulation were measured before transfusion, at 1 h after transfusion and 24 h after transfusion. The impact of disease severity of the recipient on these changes was assessed by comparing septic and non-septic patients (according to sepsis-3 definition) and by correlation of biomarkers with the sequential organ failure assessment (SOFA) score. RESULTS: Levels of von Willebrand Factor (vWF), soluble ICAM-1, soluble thrombomodulin, fibrinogen and d-dimer were already high at baseline, whereas ADAMTS13 levels were low. VWF levels increased significantly 24 h after RBC transfusion (median 478% (338-597) vs. 526% (395-623), p = 0.009). The other biomarkers did not change significantly. Post transfusion change was not dependent on the presence of sepsis and was not correlated with SOFA score. CONCLUSION: RBC transfusion in critically ill patients was associated with an increase in circulating vWF levels, suggesting a further increase in activation of the endothelium, a finding that was independent of the presence of sepsis or organ injury level.


Subject(s)
Critical Illness , Erythrocyte Transfusion , Endothelial Cells , Humans , Inflammation , Intensive Care Units
9.
Crit Care Med ; 49(12): 2070-2079, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34166287

ABSTRACT

OBJECTIVES: In critically ill patients, dysnatremia is common, and in these patients, in-hospital mortality is higher. It remains unknown whether changes of serum sodium after ICU admission affect mortality, especially whether normalization of mild hyponatremia improves survival. DESIGN: Retrospective cohort study. SETTING: Ten Dutch ICUs between January 2011 and April 2017. PATIENTS: Adult patients were included if at least one serum sodium measurement within 24 hours of ICU admission and at least one serum sodium measurement 24-48 hours after ICU admission were available. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: A logistic regression model adjusted for age, sex, and Acute Physiology and Chronic Health Evaluation-IV-predicted mortality was used to assess the difference between mean of sodium measurements 24-48 hours after ICU admission and first serum sodium measurement at ICU admission (Δ48 hr-[Na]) and in-hospital mortality. In total, 36,660 patients were included for analysis. An increase in serum sodium was independently associated with a higher risk of in-hospital mortality in patients admitted with normonatremia (Δ48 hr-[Na] 5-10 mmol/L odds ratio: 1.61 [1.44-1.79], Δ48 hr-[Na] > 10 mmol/L odds ratio: 4.10 [3.20-5.24]) and hypernatremia (Δ48 hr-[Na] 5-10 mmol/L odds ratio: 1.47 [1.02-2.14], Δ48 hr-[Na] > 10 mmol/L odds ratio: 8.46 [3.31-21.64]). In patients admitted with mild hyponatremia and Δ48 hr-[Na] greater than 5 mmol/L, no significant difference in hospital mortality was found (odds ratio, 1.11 [0.99-1.25]). CONCLUSIONS: An increase in serum sodium in the first 48 hours of ICU admission was associated with higher in-hospital mortality in patients admitted with normonatremia and in patients admitted with hypernatremia.


Subject(s)
Critical Illness/mortality , Hospital Mortality/trends , Hypernatremia/complications , Sodium/analysis , Adult , Aged , Cohort Studies , Correlation of Data , Female , Humans , Hypernatremia/blood , Hypernatremia/mortality , Intensive Care Units/organization & administration , Intensive Care Units/statistics & numerical data , Logistic Models , Male , Middle Aged , Netherlands/epidemiology , Retrospective Studies , Sodium/blood
10.
Anesthesiology ; 134(5): 748-759, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33711154

ABSTRACT

BACKGROUND: The lateral abdominal wall muscles are recruited with active expiration, as may occur with high breathing effort, inspiratory muscle weakness, or pulmonary hyperinflation. The effects of critical illness and mechanical ventilation on these muscles are unknown. This study aimed to assess the reproducibility of expiratory muscle (i.e., lateral abdominal wall muscles and rectus abdominis muscle) ultrasound and the impact of tidal volume on expiratory muscle thickness, to evaluate changes in expiratory muscle thickness during mechanical ventilation, and to compare this to changes in diaphragm thickness. METHODS: Two raters assessed the interrater and intrarater reproducibility of expiratory muscle ultrasound (n = 30) and the effect of delivered tidal volume on expiratory muscle thickness (n = 10). Changes in the thickness of the expiratory muscles and the diaphragm were assessed in 77 patients with at least two serial ultrasound measurements in the first week of mechanical ventilation. RESULTS: The reproducibility of the measurements was excellent (interrater intraclass correlation coefficient: 0.994 [95% CI, 0.987 to 0.997]; intrarater intraclass correlation coefficient: 0.992 [95% CI, 0.957 to 0.998]). Expiratory muscle thickness decreased by 3.0 ± 1.7% (mean ± SD) with tidal volumes of 481 ± 64 ml (P < 0.001). The thickness of the expiratory muscles remained stable in 51 of 77 (66%), decreased in 17 of 77 (22%), and increased in 9 of 77 (12%) patients. Reduced thickness resulted from loss of muscular tissue, whereas increased thickness mainly resulted from increased interparietal fasciae thickness. Changes in thickness of the expiratory muscles were not associated with changes in the thickness of the diaphragm (R2 = 0.013; P = 0.332). CONCLUSIONS: Thickness measurement of the expiratory muscles by ultrasound has excellent reproducibility. Changes in the thickness of the expiratory muscles occurred in 34% of patients and were unrelated to changes in diaphragm thickness. Increased expiratory muscle thickness resulted from increased thickness of the fasciae.


Subject(s)
Abdominal Muscles/anatomy & histology , Respiration, Artificial , Respiratory Muscles/anatomy & histology , Ultrasonography/methods , Exhalation , Female , Humans , Male , Middle Aged , Netherlands , Observer Variation , Prospective Studies , Rectus Abdominis/anatomy & histology , Reproducibility of Results
11.
Crit Care ; 25(1): 310, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34461968

ABSTRACT

This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2021. Other selected articles can be found online at  https://www.biomedcentral.com/collections/annualupdate2021 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from  https://link.springer.com/bookseries/8901 .


Subject(s)
Ascorbic Acid/analysis , Biomarkers/analysis , Ascorbic Acid/blood , Biomarkers/blood , Critical Illness , Humans , Predictive Value of Tests , Treatment Outcome
12.
JAMA ; 326(10): 940-948, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34463696

ABSTRACT

Importance: Hyperoxemia may increase organ dysfunction in critically ill patients, but optimal oxygenation targets are unknown. Objective: To determine whether a low-normal Pao2 target compared with a high-normal target reduces organ dysfunction in critically ill patients with systemic inflammatory response syndrome (SIRS). Design, Setting, and Participants: Multicenter randomized clinical trial in 4 intensive care units in the Netherlands. Enrollment was from February 2015 to October 2018, with end of follow-up to January 2019, and included adult patients admitted with 2 or more SIRS criteria and expected stay of longer than 48 hours. A total of 9925 patients were screened for eligibility, of whom 574 fulfilled the enrollment criteria and were randomized. Interventions: Target Pao2 ranges were 8 to 12 kPa (low-normal, n = 205) and 14 to 18 kPa (high-normal, n = 195). An inspired oxygen fraction greater than 0.60 was applied only when clinically indicated. Main Outcomes and Measures: Primary end point was SOFARANK, a ranked outcome of nonrespiratory organ failure quantified by the nonrespiratory components of the Sequential Organ Failure Assessment (SOFA) score, summed over the first 14 study days. Participants were ranked from fastest organ failure improvement (lowest scores) to worsening organ failure or death (highest scores). Secondary end points were duration of mechanical ventilation, in-hospital mortality, and hypoxemic measurements. Results: Among the 574 patients who were randomized, 400 (70%) were enrolled within 24 hours (median age, 68 years; 140 women [35%]), all of whom completed the trial. The median Pao2 difference between the groups was -1.93 kPa (95% CI, -2.12 to -1.74; P < .001). The median SOFARANK score was -35 points in the low-normal Pao2 group vs -40 in the high-normal Pao2 group (median difference, 10 [95% CI, 0 to 21]; P = .06). There was no significant difference in median duration of mechanical ventilation (3.4 vs 3.1 days; median difference, -0.15 [95% CI, -0.88 to 0.47]; P = .59) and in-hospital mortality (32% vs 31%; odds ratio, 1.04 [95% CI, 0.67 to 1.63]; P = .91). Mild hypoxemic measurements occurred more often in the low-normal group (1.9% vs 1.2%; median difference, 0.73 [95% CI, 0.30 to 1.20]; P < .001). Acute kidney failure developed in 20 patients (10%) in the low-normal Pao2 group and 21 patients (11%) in the high-normal Pao2 group, and acute myocardial infarction in 6 patients (2.9%) in the low-normal Pao2 group and 7 patients (3.6%) in the high-normal Pao2 group. Conclusions and Relevance: Among critically ill patients with 2 or more SIRS criteria, treatment with a low-normal Pao2 target compared with a high-normal Pao2 target did not result in a statistically significant reduction in organ dysfunction. However, the study may have had limited power to detect a smaller treatment effect than was hypothesized. Trial Registration: ClinicalTrials.gov Identifier: NCT02321072.


Subject(s)
Critical Illness/therapy , Oxygen Inhalation Therapy/methods , Oxygen/administration & dosage , Aged , Critical Illness/classification , Female , Humans , Hyperoxia/etiology , Intensive Care Units , Male , Middle Aged , Multiple Organ Failure/prevention & control , Organ Dysfunction Scores , Oxygen/blood , Oxygen Inhalation Therapy/adverse effects , Respiration, Artificial , Systemic Inflammatory Response Syndrome
13.
Crit Care Med ; 48(12): 1720-1728, 2020 12.
Article in English | MEDLINE | ID: mdl-33009100

ABSTRACT

OBJECTIVES: In critically ill patients, treatment dose or intensity is often related to severity of illness and mortality risk, whereas overtreatment or undertreatment (relative to the individual need) may further increase the odds of death. We aimed to investigate how these relationships affect the results of common statistical methods used in observational studies. DESIGN: Using Monte Carlo simulation, we generated data for 5,000 patients with a treatment dose related to the pretreatment mortality risk but with randomly distributed overtreatment or undertreatment. Significant overtreatment or undertreatment (relative to the optimal dose) further increased the mortality risk. A prognostic score that reflects the mortality risk and an outcome of death or survival was then generated. The study was analyzed: 1) using logistic regression to estimate the effect of treatment dose on outcome while controlling for prognostic score and 2) using propensity score matching and inverse probability weighting of the effect of high treatment dose on outcome. The data generation and analyses were repeated 1,500 times over sample sizes between 200 and 30,000 patients, with an increasing accuracy of the prognostic score and with different underlying assumptions. SETTING: Computer-simulated studies. MEASUREMENTS AND MAIN RESULTS: In the simulated 5,000-patient observational study, higher treatment dose was found to be associated with increased odds of death (p = 0.00001) while controlling for the prognostic score with logistic regression. Propensity-matched analysis led to similar results. Larger sample sizes led to equally biased estimates with narrower CIs. A perfect risk predictor negated the bias only under artificially perfect assumptions. CONCLUSIONS: When a treatment dose is associated with severity of illness and should be dosed "enough," logistic regression, propensity score matching, and inverse probability weighting to adjust for confounding by severity of illness lead to biased results. Larger sample sizes lead to more precisely wrong estimates.


Subject(s)
Critical Illness/therapy , Observational Studies as Topic , Severity of Illness Index , Statistics as Topic/methods , Computer Simulation , Critical Illness/mortality , Humans , Monte Carlo Method , Observational Studies as Topic/methods , Risk Factors , Treatment Outcome
14.
Transfusion ; 60(2): 294-302, 2020 02.
Article in English | MEDLINE | ID: mdl-31804732

ABSTRACT

BACKGROUND: Red blood cell (RBC) transfusion is associated with adverse effects, which may involve activation of the host immune response. The effect of RBC transfusion on neutrophil Reactive Oxygen Species (ROS) production and adhesion ex vivo was investigated in endotoxemic volunteers and in critically ill patients that received a RBC transfusion. We hypothesized that RBC transfusion would cause neutrophil activation, the extent of which depends on the storage time and the inflammatory status of the recipient. STUDY DESIGN AND METHODS: Volunteers were injected with lipopolysaccharide (LPS) and transfused with either saline, fresh, or stored autologous RBCs. In addition, 47 critically ill patients with and without sepsis receiving either fresh (<8 days) or standard stored RBC (2-35 days) were included. Neutrophils from healthy volunteers were incubated with the plasma samples from the endotoxemic volunteers and from the critically ill patients, after which priming of neutrophil ROS production and adhesion were assessed. RESULTS: In the endotoxemia model, ex vivo neutrophil adhesion, but not ROS production, was increased after transfusion, which was not affected by RBC storage duration. In the critically ill, ex vivo neutrophil ROS production was already increased prior to transfusion and was not increased following transfusion. Neutrophil adhesion was increased following transfusion, which was more notable in the septic patients than in non-septic patients. Transfusion of fresh RBCs, but not standard issued RBCs, resulted in enhanced ROS production in neutrophils. CONCLUSION: RBC transfusion was associated with increased neutrophil adhesion in a model of human endotoxemia as well as in critically ill patients with sepsis.


Subject(s)
Endotoxemia/metabolism , Erythrocyte Transfusion/adverse effects , Neutrophils/cytology , Sepsis/therapy , Adolescent , Adult , Cell Adhesion/physiology , Cells, Cultured , Critical Illness , Healthy Volunteers , Humans , Male , Reactive Oxygen Species/metabolism , Sepsis/metabolism , Young Adult
15.
Crit Care ; 24(1): 628, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33126902

ABSTRACT

BACKGROUND: Expiratory muscle weakness leads to difficult ventilator weaning. Maintaining their activity with functional electrical stimulation (FES) may improve outcome. We studied feasibility of breath-synchronized expiratory population muscle FES in a mixed ICU population ("Holland study") and pooled data with our previous work ("Australian study") to estimate potential clinical effects in a larger group. METHODS: Holland: Patients with a contractile response to FES received active or sham expiratory muscle FES (30 min, twice daily, 5 days/week until weaned). Main endpoints were feasibility (e.g., patient recruitment, treatment compliance, stimulation intensity) and safety. Pooled: Data on respiratory muscle thickness and ventilation duration from the Holland and Australian studies were combined (N = 40) in order to estimate potential effect size. Plasma cytokines (day 0, 3) were analyzed to study the effects of FES on systemic inflammation. RESULTS: Holland: A total of 272 sessions were performed (active/sham: 169/103) in 20 patients (N = active/sham: 10/10) with a total treatment compliance rate of 91.1%. No FES-related serious adverse events were reported. Pooled: On day 3, there was a between-group difference (N = active/sham: 7/12) in total abdominal expiratory muscle thickness favoring the active group [treatment difference (95% confidence interval); 2.25 (0.34, 4.16) mm, P = 0.02] but not on day 5. Plasma cytokine levels indicated that early FES did not induce systemic inflammation. Using a survival analysis approach for the total study population, median ventilation duration and ICU length of stay were 10 versus 52 (P = 0.07), and 12 versus 54 (P = 0.03) days for the active versus sham group. Median ventilation duration of patients that were successfully extubated was 8.5 [5.6-12.2] versus 10.5 [5.3-25.6] days (P = 0.60) for the active (N = 16) versus sham (N = 10) group, and median ICU length of stay was 10.5 [8.0-14.5] versus 14.0 [9.0-19.5] days (P = 0.36) for those active (N = 16) versus sham (N = 8) patients that were extubated and discharged alive from the ICU. During ICU stay, 3/20 patients died in the active group versus 8/20 in the sham group (P = 0.16). CONCLUSION: Expiratory muscle FES is feasible in selected ICU patients and might be a promising technique within a respiratory muscle-protective ventilation strategy. The next step is to study the effects on weaning and ventilator liberation outcome. TRIAL REGISTRATION: ClinicalTrials.gov, ID NCT03453944. Registered 05 March 2018-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03453944 .


Subject(s)
Electric Stimulation/methods , Respiratory Muscles/innervation , Aged , Aged, 80 and over , Cohort Studies , Electric Stimulation/instrumentation , Feasibility Studies , Female , Hospital Mortality/trends , Humans , Male , Medicare/statistics & numerical data , Medicare/trends , Proportional Hazards Models , Respiration, Artificial/instrumentation , Respiration, Artificial/methods , Respiratory Muscles/physiopathology , Retrospective Studies , United States
17.
Eur Respir J ; 54(1)2019 07.
Article in English | MEDLINE | ID: mdl-31109985

ABSTRACT

OBJECTIVE: We wished to explore the use, diagnostic capability and outcomes of bronchoscopy added to noninvasive testing in immunocompromised patients. In this setting, an inability to identify the cause of acute hypoxaemic respiratory failure is associated with worse outcome. Every effort should be made to obtain a diagnosis, either with noninvasive testing alone or combined with bronchoscopy. However, our understanding of the risks and benefits of bronchoscopy remains uncertain. PATIENTS AND METHODS: This was a pre-planned secondary analysis of Efraim, a prospective, multinational, observational study of 1611 immunocompromised patients with acute respiratory failure admitted to the intensive care unit (ICU). We compared patients with noninvasive testing only to those who had also received bronchoscopy by bivariate analysis and after propensity score matching. RESULTS: Bronchoscopy was performed in 618 (39%) patients who were more likely to have haematological malignancy and a higher severity of illness score. Bronchoscopy alone achieved a diagnosis in 165 patients (27% adjusted diagnostic yield). Bronchoscopy resulted in a management change in 236 patients (38% therapeutic yield). Bronchoscopy was associated with worsening of respiratory status in 69 (11%) patients. Bronchoscopy was associated with higher ICU (40% versus 28%; p<0.0001) and hospital mortality (49% versus 41%; p=0.003). The overall rate of undiagnosed causes was 13%. After propensity score matching, bronchoscopy remained associated with increased risk of hospital mortality (OR 1.41, 95% CI 1.08-1.81). CONCLUSIONS: Bronchoscopy was associated with improved diagnosis and changes in management, but also increased hospital mortality. Balancing risk and benefit in individualised cases should be investigated further.


Subject(s)
Bronchoscopy/adverse effects , Hematologic Neoplasms/diagnostic imaging , Immunocompromised Host , Respiratory Insufficiency/diagnosis , Aged , Bronchoscopy/instrumentation , Female , Hospital Mortality , Humans , Intensive Care Units/statistics & numerical data , Logistic Models , Male , Middle Aged , Noninvasive Ventilation/methods , Prospective Studies , Respiratory Insufficiency/physiopathology
18.
Transfusion ; 59(4): 1196-1201, 2019 04.
Article in English | MEDLINE | ID: mdl-30597563

ABSTRACT

BACKGROUND: Anemia of inflammation (AI) has a high prevalence in critically ill patients. In AI, iron metabolism is altered, as high levels of inflammation-induced hepcidin reduce the amount of iron available for erythropoiesis. AI is treated with red blood cell (RBC) transfusions. The effect of RBC transfusion on iron metabolism during inflammatory processes in adults is unknown. We investigated the effect of RBC transfusion on iron metabolism in critically ill patients. METHODS: In a prospective cohort study in 61 critically ill patients who received 1 RBC unit, levels of iron variables were determined before, directly after, and 24 hours after transfusion in septic and nonseptic patients. RESULTS: Serum iron levels were low and increased after transfusion (p = 0.02). However, RBC transfusion had no effect on transferrin saturation (p = 0.14) and ferritin levels (p = 0.74). Hepcidin levels increased after RBC transfusion (p = 0.01), while interleukin-6 levels decreased (p = 0.03). In septic patients, RBC transfusion induced a decrease in haptoglobin levels compared to baseline, which did not occur in nonseptic patients (p = 0.01). The effect of RBC transfusion on other iron variables did not differ between septic and nonseptic patients. CONCLUSION: Transfusion of a RBC unit transiently increases serum iron levels in intensive care unit patients. The increase in hepcidin levels after transfusion can further decrease iron release from intracellular storage making it available for erythropoiesis. RBC transfusion is associated with a decrease in haptoglobin levels in septic compared to nonseptic patients, but did not affect other markers of hemolysis.


Subject(s)
Critical Illness , Erythrocyte Transfusion , Iron/metabolism , Aged , Female , Hepcidins/blood , Humans , Inflammation/metabolism , Intensive Care Units , Male , Middle Aged , Prospective Studies , Sepsis/metabolism
19.
Am J Respir Crit Care Med ; 198(4): 472-485, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29578749

ABSTRACT

RATIONALE: Diaphragm weakness in critically ill patients prolongs ventilator dependency and duration of hospital stay and increases mortality and healthcare costs. The mechanisms underlying diaphragm weakness include cross-sectional fiber atrophy and contractile protein dysfunction, but whether additional mechanisms are at play is unknown. OBJECTIVES: To test the hypothesis that mechanical ventilation with positive end-expiratory pressure (PEEP) induces longitudinal atrophy by displacing the diaphragm in the caudal direction and reducing the length of fibers. METHODS: We studied structure and function of diaphragm fibers of mechanically ventilated critically ill patients and mechanically ventilated rats with normal and increased titin compliance. MEASUREMENTS AND MAIN RESULTS: PEEP causes a caudal movement of the diaphragm, both in critically ill patients and in rats, and this caudal movement reduces fiber length. Diaphragm fibers of 18-hour mechanically ventilated rats (PEEP of 2.5 cm H2O) adapt to the reduced length by absorbing serially linked sarcomeres, the smallest contractile units in muscle (i.e., longitudinal atrophy). Increasing the compliance of titin molecules reduces longitudinal atrophy. CONCLUSIONS: Mechanical ventilation with PEEP results in longitudinal atrophy of diaphragm fibers, a response that is modulated by the elasticity of the giant sarcomeric protein titin. We postulate that longitudinal atrophy, in concert with the aforementioned cross-sectional atrophy, hampers spontaneous breathing trials in critically ill patients: during these efforts, end-expiratory lung volume is reduced, and the shortened diaphragm fibers are stretched to excessive sarcomere lengths. At these lengths, muscle fibers generate less force, and diaphragm weakness ensues.


Subject(s)
Diaphragm/pathology , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Positive-Pressure Respiration/adverse effects , Adult , Aged , Aged, 80 and over , Animals , Biopsy , Diaphragm/diagnostic imaging , Disease Models, Animal , Female , Humans , Male , Middle Aged , Muscular Atrophy/diagnostic imaging , Rats , Ultrasonography
20.
Microcirculation ; 25(2)2018 02.
Article in English | MEDLINE | ID: mdl-29210137

ABSTRACT

OBJECTIVE: To determine the human dose-response relationship between a stepwise increase in arterial oxygen tension and its associated changes in DO2 and sublingual microcirculatory perfusion. METHODS: Fifteen healthy volunteers breathed increasing oxygen fractions for 10 minutes to reach arterial oxygen tensions of baseline (breathing air), 20, 40, 60 kPa, and max kPa (breathing oxygen). Systemic hemodynamics were measured continuously by the volume-clamp method. At the end of each period, the sublingual microcirculation was assessed by SDF. RESULTS: Systemic DO2 was unchanged throughout the study (Pslope  = .8). PVD decreased in a sigmoidal fashion (max -15% while breathing oxygen, SD18, Pslope  = .001). CI decreased linearly (max -10%, SD10, Pslope  < .001) due to a reduction in HR (max -10%, SD7, Pslope  = .009). There were no changes in stroke volume or MAP. Most changes became apparent above an arterial oxygen tension of 20 kPa. CONCLUSIONS: In healthy volunteers, supraphysiological arterial oxygen tensions have no effect on systemic DO2 . Sublingual microcirculatory PVD decreased in a dose-dependent fashion. All hemodynamic changes appear negligible up to an arterial oxygen tension of 20 kPa.


Subject(s)
Hyperoxia/metabolism , Microcirculation , Mouth Floor/blood supply , Oxygen/metabolism , Adult , Arteries , Blood Pressure , Healthy Volunteers , Hemodynamics , Humans , Hyperoxia/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL