ABSTRACT
Pediatric cancer NMR-metabonomics might be a powerful tool to discover modified biochemical pathways in tumor development, improve cancer diagnosis, and, consequently, treatment. Wilms tumor (WT) is the most common kidney tumor in young children whose genetic and epigenetic abnormalities lead to cell metabolism alterations, but, so far, investigation of metabolic pathways in WT is scarce. We aimed to explore the high-resolution magic-angle spinning nuclear magnetic resonance (HR-MAS NMR) metabonomics of WT and normal kidney (NK) samples. For this study, 14 WT and 7 NK tissue samples were obtained from the same patients and analyzed. One-dimensional and two-dimensional HR-MAS NMR spectra were processed, and the one-dimensional NMR data were analyzed using chemometrics. Chemometrics enabled us to elucidate the most significant differences between the tumor and normal tissues and to discover intrinsic metabolite alterations in WT. The metabolic differences in WT tissues were revealed by a validated PLS-DA applied on HR-MAS T2-edited 1H-NMR and were assigned to 16 metabolites, such as lipids, glucose, and branched-chain amino acids (BCAAs), among others. The WT compared to NK samples showed 13 metabolites with increased concentrations and 3 metabolites with decreased concentrations. The relative BCAA concentrations were decreased in the WT while lipids, lactate, and glutamine/glutamate showed increased levels. Sixteen tissue metabolites distinguish the analyzed WT samples and point to altered glycolysis, glutaminolysis, TCA cycle, and lipid and BCAA metabolism in WT. Significant variation in the concentrations of metabolites, such as glutamine/glutamate, lipids, lactate, and BCAAs, was observed in WT and opened up a perspective for their further study and clinical validation.
ABSTRACT
Childhood renal tumors account for ~7% of all childhood cancers, and most cases are embryonic Wilms' tumors (WT). Children with WT are usually treated by either COG or SIOP. The later treats the children using preoperative chemotherapy, but both have around 90% of overall survival in five years. WT is a genetically heterogeneous group with a low prevalence of known somatic alterations. Only around 30% of the cases present mutation in known genes, and there is a relatively high degree of intra-tumor genetic heterogeneity (ITGH). Besides potentially having an impact on the clinical outcome of patients, ITGH may interfere with the search for molecular markers that are prospectively being tested by COG and SIOP. In this review, we present the proposal of the current UMBRELLA SIOP Study 2017/Brazilian Renal Tumor Group that requires the multi-sampling collection of each tumor to better evaluate possible molecular markers, as well as to understand WT biology.
Subject(s)
Genetic Heterogeneity , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Wilms Tumor/genetics , Wilms Tumor/pathology , Biomarkers, Tumor/analysis , Brazil , Child , Humans , Mutation , PrognosisABSTRACT
BACKGROUND: Wilms tumor (WT) is a curable pediatric renal malignancy, but there is a need for new molecular biomarkers to improve relapse risk-directed therapy. Somatic alterations occur at relatively low frequencies whereas epigenetic changes at 11p15 are the most common aberration. We analyzed long interspersed element-1 (LINE-1) methylation levels in the blastemal component of WT and normal kidney samples to explore their prognostic significance. RESULTS: WT samples presented a hypomethylated pattern at all five CpG sites compared to matched normal kidney samples; therefore, the averaged methylation levels of the five CpG sites were used for further analyses. WT presented a hypomethylation profile (median 65.0%, 47.4-73.2%) compared to normal kidney samples (median 71.8%, 51.5-77.5%; p < 0.0001). No significant associations were found between LINE-1 methylation levels and clinical-pathological characteristics. We observed that LINE-1 methylation levels were lower in tumor samples from patients with relapse (median methylation 60.5%) compared to patients without relapse (median methylation 66.5%; p = 0.0005), and a receiving operating characteristic curve analysis was applied to verify the ability of LINE-1 methylation levels to discriminate WT samples from these patients. Using a cut-off value of 62.71% for LINE-1 methylation levels, the area under the curve was 0.808, with a sensitivity of 76.5% and a specificity of 83.3%. Having identified differences in LINE-1 methylation between WT samples from patients with and without relapse in this cohort, we evaluated other prognostic factors using a logistic regression model. This analysis showed that in risk stratification, LINE-1 methylation level was an independent variable for relapse risk: the lower the methylation levels, the higher the risk of relapse. The logistic regression model indicated a relapse risk increase of 30% per decreased unit of methylation (odds ratio 1.30; 95% confidence interval 1.07-1.57). CONCLUSION: Our results reinforce previous data showing a global hypomethylation profile in WT. LINE-1 methylation levels can be suggested as a marker of relapse after chemotherapy treatment in addition to risk classification, helping to guide new treatment approaches.
Subject(s)
DNA Methylation , Kidney Neoplasms/pathology , Long Interspersed Nucleotide Elements , Wilms Tumor/pathology , Adolescent , Child , Child, Preschool , CpG Islands , Epigenesis, Genetic , Female , Genetic Association Studies , Humans , Infant , Infant, Newborn , Kidney Neoplasms/genetics , Male , Neoplasm Staging , Prognosis , Recurrence , Wilms Tumor/geneticsABSTRACT
SUMMARY Childhood renal tumors account for ~7% of all childhood cancers, and most cases are embryonic Wilms' tumors (WT). Children with WT are usually treated by either COG or SIOP. The later treats the children using preoperative chemotherapy, but both have around 90% of overall survival in five years. WT is a genetically heterogeneous group with a low prevalence of known somatic alterations. Only around 30% of the cases present mutation in known genes, and there is a relatively high degree of intra-tumor genetic heterogeneity (ITGH). Besides potentially having an impact on the clinical outcome of patients, ITGH may interfere with the search for molecular markers that are prospectively being tested by COG and SIOP. In this review, we present the proposal of the current UMBRELLA SIOP Study 2017/Brazilian Renal Tumor Group that requires the multi-sampling collection of each tumor to better evaluate possible molecular markers, as well as to understand WT biology
RESUMO Os tumores renais pediátricos correspondem a aproximadamente 7% de todos os tumores infantis, sendo o mais frequente o tumor de Wilms (TW). Crianças com TW são geralmente tratadas seguindo dois distintos protocolos terapêuticos (COG ou SIOP), sendo que no último, os pacientes recebem tratamento quimioterápico pré-operatório. Ambos apresentam sobrevida global em cinco anos em torno de 90%. TW é geneticamente heterogêneo, apresentando baixa prevalência de alterações somáticas conhecidas, com cerca de 30% dos casos apresentando mutações em genes conhecidos e um alto grau de heterogeneidade genética intratumoral (HGIT). Além de potencialmente ter um impacto sobre o desfecho clínico dos pacientes, a HGIT pode interferir na busca de marcadores moleculares que estão sendo testados prospectivamente pelos grupos COG e Siop. Nesta revisão, apresentamos a proposta do atual estudo Umbrella Siop 2017/Grupo de Tumores Renais Brasileiros (GTRB), que orienta a coleta de três diferentes regiões do tumor para melhor avaliar possíveis marcadores moleculares, bem como para compreender a biologia do TW.