Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters

Publication year range
1.
Hum Mol Genet ; 32(3): 489-495, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36018819

ABSTRACT

Little is known regarding the potential relationship between clonal hematopoiesis (CH) of indeterminate potential (CHIP), which is the expansion of hematopoietic stem cells with somatic mutations, and risk of prostate cancer, the fifth leading cause of cancer death of men worldwide. We evaluated the association of age-related CHIP with overall and aggressive prostate cancer risk in two large whole-exome sequencing studies of 75 047 European ancestry men, including 7663 prostate cancer cases, 2770 of which had aggressive disease, and 3266 men carrying CHIP variants. We found that CHIP, defined by over 50 CHIP genes individually and in aggregate, was not significantly associated with overall (aggregate HR = 0.93, 95% CI = 0.76-1.13, P = 0.46) or aggressive (aggregate OR = 1.14, 95% CI = 0.92-1.41, P = 0.22) prostate cancer risk. CHIP was weakly associated with genetic risk of overall prostate cancer, measured using a polygenic risk score (OR = 1.05 per unit increase, 95% CI = 1.01-1.10, P = 0.01). CHIP was not significantly associated with carrying pathogenic/likely pathogenic/deleterious variants in DNA repair genes, which have previously been found to be associated with aggressive prostate cancer. While findings from this study suggest that CHIP is likely not a risk factor for prostate cancer, it will be important to investigate other types of CH in association with prostate cancer risk.


Subject(s)
Clonal Hematopoiesis , Prostatic Neoplasms , Male , Humans , Hematopoiesis/genetics , Risk Factors , Hematopoietic Stem Cells , Prostatic Neoplasms/genetics , Mutation
2.
PLoS Genet ; 18(9): e1010388, 2022 09.
Article in English | MEDLINE | ID: mdl-36070312

ABSTRACT

BACKGROUND: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. PA has at least a 50% higher incidence in populations of European ancestry compared to other ancestral groups, which may be due in part to genetic differences. METHODS: We first compared the global proportions of European, African, and Amerindian ancestries in 301 PA cases and 1185 controls of self-identified Latino ethnicity from the California Biobank. We then conducted admixture mapping analysis to assess PA risk with local ancestry. RESULTS: We found PA cases had a significantly higher proportion of global European ancestry than controls (case median = 0.55, control median = 0.51, P value = 3.5x10-3). Admixture mapping identified 13 SNPs in the 6q14.3 region (SNX14) contributing to risk, as well as three other peaks approaching significance on chromosomes 7, 10 and 13. Downstream fine mapping in these regions revealed several SNPs potentially contributing to childhood PA risk. CONCLUSIONS: There is a significant difference in genomic ancestry associated with Latino PA risk and several genomic loci potentially mediating this risk.


Subject(s)
Astrocytoma , Genome-Wide Association Study , Astrocytoma/genetics , Child , Chromosome Mapping , Hispanic or Latino/genetics , Humans , Polymorphism, Single Nucleotide/genetics
3.
Hum Mol Genet ; 31(21): 3741-3756, 2022 10 28.
Article in English | MEDLINE | ID: mdl-35717575

ABSTRACT

Genome-wide association studies have identified a growing number of single nucleotide polymorphisms (SNPs) associated with childhood acute lymphoblastic leukemia (ALL), yet the functional roles of most SNPs are unclear. Multiple lines of evidence suggest that epigenetic mechanisms may mediate the impact of heritable genetic variation on phenotypes. Here, we investigated whether DNA methylation mediates the effect of genetic risk loci for childhood ALL. We performed an epigenome-wide association study (EWAS) including 808 childhood ALL cases and 919 controls from California-based studies using neonatal blood DNA. For differentially methylated CpG positions (DMPs), we next conducted association analysis with 23 known ALL risk SNPs followed by causal mediation analyses addressing the significant SNP-DMP pairs. DNA methylation at CpG cg01139861, in the promoter region of IKZF1, mediated the effects of the intronic IKZF1 risk SNP rs78396808, with the average causal mediation effect (ACME) explaining ~30% of the total effect (ACME P = 0.0031). In analyses stratified by self-reported race/ethnicity, the mediation effect was only significant in Latinos, explaining ~41% of the total effect of rs78396808 on ALL risk (ACME P = 0.0037). Conditional analyses confirmed the presence of at least three independent genetic risk loci for childhood ALL at IKZF1, with rs78396808 unique to non-European populations. We also demonstrated that the most significant DMP in the EWAS, CpG cg13344587 at gene ARID5B (P = 8.61 × 10-10), was entirely confounded by the ARID5B ALL risk SNP rs7090445. Our findings provide new insights into the functional pathways of ALL risk SNPs and the DNA methylation differences associated with risk of childhood ALL.


Subject(s)
DNA Methylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , DNA Methylation/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Transcription Factors/genetics
4.
Am J Hum Genet ; 108(10): 1823-1835, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34469753

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Despite overlap between genetic risk loci for ALL and hematologic traits, the etiological relevance of dysregulated blood-cell homeostasis remains unclear. We investigated this question in a genome-wide association study (GWAS) of childhood ALL (2,666 affected individuals, 60,272 control individuals) and a multi-trait GWAS of nine blood-cell indices in the UK Biobank. We identified 3,000 blood-cell-trait-associated (p < 5.0 × 10-8) variants, explaining 4.0% to 23.9% of trait variation and including 115 loci associated with blood-cell ratios (LMR, lymphocyte-to-monocyte ratio; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio). ALL susceptibility was genetically correlated with lymphocyte counts (rg = 0.088, p = 4.0 × 10-4) and PLR (rg = -0.072, p = 0.0017). In Mendelian randomization analyses, genetically predicted increase in lymphocyte counts was associated with increased ALL risk (odds ratio [OR] = 1.16, p = 0.031) and strengthened after accounting for other cell types (OR = 1.43, p = 8.8 × 10-4). We observed positive associations with increasing LMR (OR = 1.22, p = 0.0017) and inverse effects for NLR (OR = 0.67, p = 3.1 × 10-4) and PLR (OR = 0.80, p = 0.002). Our study shows that a genetically induced shift toward higher lymphocyte counts, overall and in relation to monocytes, neutrophils, and platelets, confers an increased susceptibility to childhood ALL.


Subject(s)
Biomarkers, Tumor/genetics , Blood Platelets/pathology , Lymphocytes/pathology , Monocytes/pathology , Neutrophils/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Quantitative Trait Loci , Adult , Aged , Case-Control Studies , Child , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prognosis , Prospective Studies , United Kingdom/epidemiology
5.
Haematologica ; 109(7): 2085-2091, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38205536

ABSTRACT

Genetic predisposition to hematologic malignancies has historically been addressed utilizing patients recruited from clinical trials and pedigrees constructed at major treatment centers. Such efforts leave unexplored the genetic basis of variations in risk by race/ethnic group shown in population-based surveillance data where cancer registration, compulsory by law, delivers universal enrollment. To address this, we performed exome sequencing on DNA isolated from newborn bloodspots derived from sibling pairs with early-onset cancers across California in which at least one of the siblings developed a hematologic cancer, using unbiased recruitment from the full state population. We identified pathogenic/likely pathogenic (P/ LP) variants among 1,172 selected cancer genes that were private or present at low allele frequencies in reference populations. Within 64 subjects from 32 families, we found 9 LP variants shared between siblings, and an additional 7 such variants in singleton children (not shared with their sibling). In 8 of the shared cases, the ancestral origin of the local haplotype that carries P/LP variants matched the dominant global ancestry of study participant families. This was the case for Latino sibling pairs on FLG and CBLB, non-Latino White sibling pairs in TP53 and NOD2, and a shared GATA2 variant for a non-Latino Black sibling pair. A new inherited mutation in HABP2 was identified in a sibling pair, one with diffuse large B-cell lymphoma and the other with neuroblastoma. Overall, the profile of P/LP germline variants across ancestral/ethnic groups suggests that rare alleles contributing to hematologic diseases originate within their race/ethnic origin parental populations, demonstrating the value of this discovery process in diverse, population-based registries.


Subject(s)
Genetic Predisposition to Disease , Hematologic Neoplasms , Humans , Hematologic Neoplasms/genetics , Hematologic Neoplasms/epidemiology , Male , Female , Age of Onset , Exome Sequencing , Ethnicity/genetics , California/epidemiology , Child, Preschool , Infant, Newborn , Child , Pedigree , Gene Frequency , Infant
6.
Hum Genomics ; 17(1): 92, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37803336

ABSTRACT

BACKGROUND: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.


Subject(s)
Down Syndrome , Heart Defects, Congenital , Humans , Male , Infant, Newborn , Female , Down Syndrome/genetics , Epigenomics , DNA Methylation/genetics , Epigenesis, Genetic , Heart Defects, Congenital/genetics , CpG Islands/genetics , Chromatin
7.
Int J Cancer ; 152(5): 845-853, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36104937

ABSTRACT

Childhood infections and cytomegalovirus (CMV) are associated with pediatric acute lymphoblastic leukemia (ALL). CMV dysregulates the host immune system and alters the immune response to subsequent antigenic exposures. We suspect that this immune dysregulation contributes to increased numbers of symptomatic infections in childhood allowing for expansion of pre-leukemic clones. We explored the association between childhood infections, maternal infections during pregnancy and CMV-positive ALL. Using a droplet digital PCR assay, we screened diagnostic ALL bone marrow samples from the California Childhood Leukemia Study (1995-2015) for the presence of CMV DNA identifying CMV-positive and CMV-negative cases. We performed a case-only analysis (n = 524) comparing the number and types of childhood infections and maternal infections during pregnancy between CMV-positive and CMV-negative ALL cases using logistic regression. With increasing numbers of infections in the first 12 months of life, children were more likely to classify to the highest tertile of CMV DNA in the bone marrow at diagnosis (OR: 1.04, 95% CI: 1.01-1.08). Specifically, those reporting cough or flu in the first 12 months were more likely to be CMV-positive at ALL diagnosis (OR: 2.15, 95% CI: 1.06-4.37 and OR: 2.06, 95% CI: 1.17-3.63 respectively). Furthermore, those with a history of maternal infection during pregnancy were more likely to be CMV-positive (OR: 2.12, 95% CI: 1.24-3.62). We hypothesize that children with underlying immune dysregulation develop more symptomatic infections in childhood and ultimately CMV-positive ALL; this underlying immune dysregulation may be due to early immune system alterations via CMV exposure (in utero or early infancy) proposing a potential link between CMV and ALL etiology.


Subject(s)
Cytomegalovirus Infections , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Female , Pregnancy , Child , Humans , Cytomegalovirus/physiology , Cytomegalovirus Infections/complications , Cytomegalovirus Infections/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Polymerase Chain Reaction , Logistic Models
8.
Am J Epidemiol ; 190(4): 519-527, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33034340

ABSTRACT

Incidence trends in acute lymphoblastic leukemia (ALL) demonstrate disparities by race and ethnicity. We used data from the Surveillance, Epidemiology, and End Results Registry to evaluate patterns in ALL incidence from 2000 to 2016, including the association between percentage of people born in a foreign country at the county level and ALL incidence. Among 23,829 persons of all ages diagnosed with ALL, 8,297 (34.8%) were Latinos, 11,714 (49.2%) were non-Latino (NL) Whites, and 1,639 (6.9%) were NL Blacks. Latinos had the largest increase in the age-adjusted incidence rate (AAIR) of ALL during this period compared with other races/ethnicities for both children and adults: The AAIR was 1.6 times higher for Latinos (AAIR = 2.43, 95% confidence interval (CI): 2.37, 2.49) than for NL Whites (AAIR = 1.56, 95% CI: 1.53, 1.59) (P < 0.01). The AAIR for all subjects increased approximately 1% per year from 2000 to 2016 (annual percent change = 0.97, 95% CI: 0.67, 1.27), with the highest increase being observed in Latinos (annual percent change = 1.18, 95% CI: 0.76, 1.60). In multivariable models evaluating the contribution of percentage of county residents who were foreign-born to ALL risk, a positive association was found for percentage foreign-born for NL Whites (P for trend < 0.01) and NL Blacks (P for trend < 0.01), but the reverse was found for Latinos (P for trend < 0.01); this is consistent with tenets of the "Hispanic paradox," in which better health outcomes exist for foreign-born Latinos.


Subject(s)
Ethnicity , Precursor Cell Lymphoblastic Leukemia-Lymphoma/ethnology , Racial Groups , Registries , SEER Program , Adolescent , Adult , Female , Humans , Incidence , Male , United States/epidemiology , Young Adult
9.
Br J Cancer ; 124(2): 315-332, 2021 01.
Article in English | MEDLINE | ID: mdl-32901135

ABSTRACT

There are well-established disparities in cancer incidence and outcomes by race/ethnicity that result from the interplay between structural, socioeconomic, socio-environmental, behavioural and biological factors. However, large research studies designed to investigate factors contributing to cancer aetiology and progression have mainly focused on populations of European origin. The limitations in clinicopathological and genetic data, as well as the reduced availability of biospecimens from diverse populations, contribute to the knowledge gap and have the potential to widen cancer health disparities. In this review, we summarise reported disparities and associated factors in the United States of America (USA) for the most common cancers (breast, prostate, lung and colon), and for a subset of other cancers that highlight the complexity of disparities (gastric, liver, pancreas and leukaemia). We focus on populations commonly identified and referred to as racial/ethnic minorities in the USA-African Americans/Blacks, American Indians and Alaska Natives, Asians, Native Hawaiians/other Pacific Islanders and Hispanics/Latinos. We conclude that even though substantial progress has been made in understanding the factors underlying cancer health disparities, marked inequities persist. Additional efforts are needed to include participants from diverse populations in the research of cancer aetiology, biology and treatment. Furthermore, to eliminate cancer health disparities, it will be necessary to facilitate access to, and utilisation of, health services to all individuals, and to address structural inequities, including racism, that disproportionally affect racial/ethnic minorities in the USA.


Subject(s)
Health Status Disparities , Minority Groups/statistics & numerical data , Neoplasms/ethnology , Ethnicity/statistics & numerical data , Female , Humans , Male , United States/ethnology
11.
Blood ; 134(15): 1227-1237, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31350265

ABSTRACT

Children with Down syndrome (DS) have a 20-fold increased risk of acute lymphoblastic leukemia (ALL) and distinct somatic features, including CRLF2 rearrangement in ∼50% of cases; however, the role of inherited genetic variation in DS-ALL susceptibility is unknown. We report the first genome-wide association study of DS-ALL, comprising a meta-analysis of 4 independent studies, with 542 DS-ALL cases and 1192 DS controls. We identified 4 susceptibility loci at genome-wide significance: rs58923657 near IKZF1 (odds ratio [OR], 2.02; Pmeta = 5.32 × 10-15), rs3731249 in CDKN2A (OR, 3.63; Pmeta = 3.91 × 10-10), rs7090445 in ARID5B (OR, 1.60; Pmeta = 8.44 × 10-9), and rs3781093 in GATA3 (OR, 1.73; Pmeta = 2.89 × 10-8). We performed DS-ALL vs non-DS ALL case-case analyses, comparing risk allele frequencies at these and other established susceptibility loci (BMI1, PIP4K2A, and CEBPE) and found significant association with DS status for CDKN2A (OR, 1.58; Pmeta = 4.1 × 10-4). This association was maintained in separate regression models, both adjusting for and stratifying on CRLF2 overexpression and other molecular subgroups, indicating an increased penetrance of CDKN2A risk alleles in children with DS. Finally, we investigated functional significance of the IKZF1 risk locus, and demonstrated mapping to a B-cell super-enhancer, and risk allele association with decreased enhancer activity and differential protein binding. IKZF1 knockdown resulted in significantly higher proliferation in DS than non-DS lymphoblastoid cell lines. Our findings demonstrate a higher penetrance of the CDKN2A risk locus in DS and serve as a basis for further biological insights into DS-ALL etiology.


Subject(s)
Down Syndrome/genetics , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , Cyclin-Dependent Kinase Inhibitor p16/genetics , DNA-Binding Proteins/genetics , Down Syndrome/complications , GATA3 Transcription Factor/genetics , Gene Frequency , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Ikaros Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/complications , Transcription Factors/genetics
12.
Clin Sci (Lond) ; 135(8): 1053-1063, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33851706

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common cancer in children. Thirdhand smoke (THS) is the residual tobacco contamination that remains after the smoke clears. We investigated the effects of THS exposure in utero and during early life in a transgenic Cdkn2a knockout mouse model that is vulnerable to the development of leukemia/lymphoma. Female mice, and their offspring, were exposed from the first day of pregnancy to weaning. Plasma cytokines, body weight and hematologic parameters were measured in the offspring. To investigate THS exposure effects on the development of leukemia/lymphoma, bone marrow (BM) was collected from control and THS-exposed mice and transplanted into BM-ablated recipient mice, which were followed for tumor development for 1 year. We found that in utero and early-life THS exposure caused significant changes in plasma cytokine concentrations and in immune cell populations; changes appeared more pronounced in male mice. Spleen (SP) and BM B-cell populations were significantly lower in THS-exposed mice. We furthermore observed that THS exposure increased the leukemia/lymphoma-free survival in BM transplantation recipient mice, potentially caused by THS-induced B-cell toxicity. A trend towards increased solid tumors in irradiated mice reconstituted with THS-exposed BM stimulates the hypothesis that the immunosuppressive effects of in utero and early-life THS exposure might contribute to carcinogenesis by lowering the host defense to other toxic exposures. Our study adds to expanding evidence that THS exposure alters the immune system and that in utero and early-life developmental periods represent vulnerable windows of susceptibility for these effects.


Subject(s)
Immune System/drug effects , Leukemia/etiology , Lymphoma/etiology , Nicotiana/adverse effects , Smoke/adverse effects , Animals , Leukemia/immunology , Lymphoma/immunology , Mice, Transgenic , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/analysis
13.
Am J Epidemiol ; 189(10): 1076-1085, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32322901

ABSTRACT

Surrogate measures of infectious exposures have been consistently associated with lower childhood acute lymphoblastic leukemia (ALL) risk. However, recent reports have suggested that physician-diagnosed early-life infections increase ALL risk, thereby raising the possibility that stronger responses to infections might promote risk. We examined whether medically diagnosed infections were related to childhood ALL risk in an integrated health-care system in the United States. Cases of ALL (n = 435) diagnosed between 1994-2014 among children aged 0-14 years, along with matched controls (n = 2,170), were identified at Kaiser Permanente Northern California. Conditional logistic regression was used to estimate risk of ALL associated with history of infections during first year of life and across the lifetime (up to diagnosis). History of infection during first year of life was not associated with ALL risk (odds ratio (OR) = 0.85, 95% confidence interval (CI): 0.60, 1.21). However, infections with at least 1 medication prescribed (i.e., more "severe" infections) were inversely associated with risk (OR = 0.42, 95% CI: 0.20, 0.88). Similar associations were observed when the exposure window was expanded to include medication-prescribed infections throughout the subjects' lifetime (OR = 0.52, 95% CI: 0.32, 0.85).


Subject(s)
Infections/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Adolescent , California/epidemiology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male
14.
Genes Chromosomes Cancer ; 58(10): 723-730, 2019 10.
Article in English | MEDLINE | ID: mdl-31102422

ABSTRACT

High hyperdiploidy (HD) is the most common cytogenetic subtype of childhood acute lymphoblastic leukemia (ALL), and a higher incidence of HD has been reported in ALL patients with congenital cancer syndromes. We assessed the frequency of predisposing germline mutations in 57 HD-ALL patients from the California Childhood Leukemia Study via targeted sequencing of cancer-relevant genes. Three out of 57 patients (5.3%) harbored confirmed germline mutations that were likely causal, in NBN, ETV6, and FLT3, with an additional six patients (10.5%) harboring putative predisposing mutations that were rare in unselected individuals (<0.01% allele frequency in the Exome Aggregation Consortium, ExAC) and predicted functional (scaled CADD score ≥ 20) in known or potential ALL predisposition genes (SH2B3, CREBBP, PMS2, MLL, ABL1, and MYH9). Three additional patients carried rare and predicted damaging germline mutations in GAB2, a known activator of the ERK/MAPK and PI3K/AKT pathways and binding partner of PTPN11-encoded SHP2. The frequency of rare and predicted functional germline GAB2 mutations was significantly higher in our patients (2.6%) than in ExAC (0.28%, P = 4.4 × 10-3 ), an observation that was replicated in ALL patients from the TARGET project (P = .034). We cloned patient GAB2 mutations and expressed mutant proteins in HEK293 cells and found that frameshift mutation P621fs led to reduced SHP2 binding and ERK1/2 phosphorylation but significantly increased AKT phosphorylation, suggesting possible RAS-independent leukemogenic effects. Our results support a significant contribution of rare, high penetrance germline mutations to HD-ALL etiology, and pinpoint GAB2 as a putative novel ALL predisposition gene.


Subject(s)
Gene Frequency , Germ-Line Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Child , Frameshift Mutation , Genetic Predisposition to Disease , HEK293 Cells , Humans , Penetrance
15.
Blood ; 129(12): 1680-1684, 2017 03 23.
Article in English | MEDLINE | ID: mdl-27979823

ABSTRACT

It is widely suspected, yet controversial, that infection plays an etiologic role in the development of acute lymphoblastic leukemia (ALL), the most common childhood cancer and a disease with a confirmed prenatal origin in most cases. We investigated infections at diagnosis and then assessed the timing of infection at birth in children with ALL and age, gender, and ethnicity matched controls to identify potential causal initiating infections. Comprehensive untargeted virome and bacterial analyses of pretreatment bone marrow specimens (n = 127 ALL in comparison with 38 acute myeloid leukemia cases in a comparison group) revealed prevalent cytomegalovirus (CMV) infection at diagnosis in childhood ALL, demonstrating active viral transcription in leukemia blasts as well as intact virions in serum. Screening of newborn blood samples revealed a significantly higher prevalence of in utero CMV infection in ALL cases (n = 268) than healthy controls (n = 270) (odds ratio [OR], 3.71, confidence interval [CI], 1.56-7.92, P = .0016). Risk was more pronounced in Hispanics (OR=5.90, CI=1.89-25.96) than in non-Hispanic whites (OR=2.10 CI= 0.69-7.13). This is the first study to suggest that congenital CMV infection is a risk factor for childhood ALL and is more prominent in Hispanic children. Further investigation of CMV as an etiologic agent for ALL is warranted.


Subject(s)
Cytomegalovirus Infections/complications , Neonatal Screening/methods , Precursor Cell Lymphoblastic Leukemia-Lymphoma/virology , Bone Marrow Examination , Case-Control Studies , Cytomegalovirus Infections/congenital , Cytomegalovirus Infections/ethnology , Hispanic or Latino , Humans , Infant, Newborn , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Prevalence , White People
17.
Int J Cancer ; 143(11): 2647-2658, 2018 12 01.
Article in English | MEDLINE | ID: mdl-29923177

ABSTRACT

Genome-wide association studies of childhood acute lymphoblastic leukemia (ALL) have identified regions of association at PIP4K2A and upstream of BMI1 at chromosome 10p12.31-12.2. The contribution of both loci to ALL risk and underlying functional variants remain to be elucidated. We carried out single nucleotide polymorphism (SNP) imputation across chromosome 10p12.31-12.2 in Latino and non-Latino white ALL cases and controls from two independent California childhood leukemia studies, and additional Genetic Epidemiology Research on Aging study controls. Ethnicity-stratified association analyses were performed using logistic regression, with meta-analysis including 3,133 cases (1,949 Latino, 1,184 non-Latino white) and 12,135 controls (8,584 Latino, 3,551 non-Latino white). SNP associations were identified at both BMI1 and PIP4K2A. After adjusting for the lead PIP4K2A SNP, genome-wide significant associations remained at BMI1, and vice-versa (pmeta < 10-10 ), supporting independent effects. Lead SNPs differed by ethnicity at both peaks. We sought functional variants in tight linkage disequilibrium with both the lead Latino SNP among Admixed Americans and lead non-Latino white SNP among Europeans. This pinpointed rs11591377 (pmeta = 2.1 x 10-10 ) upstream of BMI1, residing within a hematopoietic stem cell enhancer of BMI1, and which showed significant preferential binding of the risk allele to MYBL2 (p = 1.73 x 10-5 ) and p300 (p = 1.55 x 10-3 ) transcription factors using binomial tests on ChIP-Seq data from a SNP heterozygote. At PIP4K2A, we identified rs4748812 (pmeta = 1.3 x 10-15 ), which alters a RUNX1 binding motif and demonstrated chromosomal looping to the PIP4K2A promoter. Fine-mapping chromosome 10p12 in a multi-ethnic ALL GWAS confirmed independent associations and identified putative functional variants upstream of BMI1 and at PIP4K2A.


Subject(s)
Chromosomes, Human, Pair 10/genetics , Genome-Wide Association Study/methods , Phosphotransferases (Alcohol Group Acceptor)/genetics , Polycomb Repressive Complex 1/genetics , Polymorphism, Single Nucleotide , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Adult , California/ethnology , Cell Cycle Proteins/metabolism , Child , Chromosome Mapping , Core Binding Factor Alpha 1 Subunit/metabolism , Enhancer Elements, Genetic , Female , Genetic Predisposition to Disease , Humans , K562 Cells , Linkage Disequilibrium , Logistic Models , Male , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Polycomb Repressive Complex 1/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/ethnology , Trans-Activators/metabolism , Young Adult
18.
Cancer ; 124(18): 3742-3752, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30311632

ABSTRACT

BACKGROUND: Although increased height has been associated with osteosarcoma risk in previous epidemiologic studies, to the authors' knowledge the relative contribution of stature during different developmental timepoints remains unclear. Furthermore, the question of how genetic determinants of height impact osteosarcoma etiology remains unexplored. Genetic variants associated with stature in previous genome-wide association studies may be biomarkers of osteosarcoma risk. METHODS: The authors tested the associations between osteosarcoma risk and polygenic scores for adult height (416 variants), childhood height (6 variants), and birth length (5 variants) in 864 osteosarcoma cases and 1879 controls of European ancestry. RESULTS: Each standard deviation increase in the polygenic score for adult height, corresponding to a 1.7-cm increase in stature, was found to be associated with a 1.10-fold increase in the risk of osteosarcoma (95% confidence interval [95% CI], 1.01-1.19; P =.027). Each standard deviation increase in the polygenic score for childhood height, corresponding to a 0.5-cm increase in stature, was associated with a 1.10-fold increase in the risk of osteosarcoma (95% CI, 1.01-1.20; P =.023). The polygenic score for birth length was not found to be associated with osteosarcoma risk (P =.11). When adult and childhood height scores were modeled together, they were found to be independently associated with osteosarcoma risk (P =.037 and P = .043, respectively). An expression quantitative trait locus for cartilage intermediate layer protein 2 (CILP2), rs8103992, was significantly associated with osteosarcoma risk after adjustment for multiple comparisons (odds ratio, 1.35; 95% CI, 1.16-1.56 [P = 7.93×10-5 and Padjusted =.034]). CONCLUSIONS: A genetic propensity for taller adult and childhood height attainments contributed independently to osteosarcoma risk in the current study data. These results suggest that the biological pathways affecting normal bone growth may be involved in osteosarcoma etiology.


Subject(s)
Body Height/genetics , Bone Neoplasms/genetics , Osteosarcoma/genetics , Adult , Bone Neoplasms/epidemiology , California/epidemiology , Case-Control Studies , Child , Child Development/physiology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant, Newborn , Male , Multifactorial Inheritance/genetics , Neonatal Screening/methods , Osteosarcoma/epidemiology , Polymorphism, Single Nucleotide , Registries , Risk Factors , White People/genetics , White People/statistics & numerical data , Young Adult
19.
Environ Health ; 17(1): 43, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29720177

ABSTRACT

BACKGROUND: Chronic lymphocytic leukemia (CLL) was the predominant leukemia in a recent study of Chornobyl cleanup workers from Ukraine exposed to radiation (UR-CLL). Radiation risks of CLL significantly increased with increasing bone marrow radiation doses. Current analysis aimed to clarify whether the increased risks were due to radiation or to genetic mutations in the Ukrainian population. METHODS: A detailed characterization of the genomic landscape was performed in a unique sample of 16 UR-CLL patients and age- and sex-matched unexposed general population Ukrainian-CLL (UN-CLL) and Western-CLL (W-CLL) patients (n = 28 and 100, respectively). RESULTS: Mutations in telomere-maintenance pathway genes POT1 and ATM were more frequent in UR-CLL compared to UN-CLL and W-CLL (both p < 0.05). No significant enrichment in copy-number abnormalities at del13q14, del11q, del17p or trisomy12 was identified in UR-CLL compared to other groups. Type of work performed in the Chornobyl zone, age at exposure and at diagnosis, calendar time, and Rai stage were significant predictors of total genetic lesions (all p < 0.05). Tumor telomere length was significantly longer in UR-CLL than in UN-CLL (p = 0.009) and was associated with the POT1 mutation and survival. CONCLUSIONS: No significant enrichment in copy-number abnormalities at CLL-associated genes was identified in UR-CLL compared to other groups. The novel associations between radiation exposure, telomere maintenance and CLL prognosis identified in this unique case series provide suggestive, though limited data and merit further investigation.


Subject(s)
Chernobyl Nuclear Accident , Genome, Human/radiation effects , Leukemia, Lymphocytic, Chronic, B-Cell/epidemiology , Neoplasms, Radiation-Induced/epidemiology , Occupational Exposure , Radiation Exposure , Adult , Case-Control Studies , Female , Follow-Up Studies , Genomics , Humans , Incidence , Leukemia, Lymphocytic, Chronic, B-Cell/etiology , Male , Middle Aged , Neoplasms, Radiation-Induced/etiology , Prevalence , Radiation Dosage , Ukraine/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL