ABSTRACT
BACKGROUND: The GMZ2.6c malaria vaccine candidate is a multi-stage Plasmodium falciparum chimeric protein which contains a fragment of the sexual-stage Pfs48/45-6C protein genetically fused to GMZ2, a fusion protein of GLURP and MSP-3, that has been shown to be well tolerated, safe and immunogenic in clinical trials performed in a malaria-endemic area of Africa. However, there is no data available on the antigenicity or immunogenicity of GMZ2.6c in humans. Considering that circulating parasites can be genetically distinct in different malaria-endemic areas and that host genetic factors can influence the immune response to vaccine antigens, it is important to verify the antigenicity, immunogenicity and the possibility of associated protection in individuals living in malaria-endemic areas with different epidemiological scenarios. Herein, the profile of antibody response against GMZ2.6c and its components (MSP-3, GLURP and Pfs48/45) in residents of the Brazilian Amazon naturally exposed to malaria, in areas with different levels of transmission, was evaluated. METHODS: This study was performed using serum samples from 352 individuals from Cruzeiro do Sul and Mâncio Lima, in the state of Acre, and Guajará, in the state of Amazonas. Specific IgG, IgM, IgA and IgE antibodies and IgG subclasses were detected by Enzyme-Linked Immunosorbent Assay. RESULTS: The results showed that GMZ2.6c protein was widely recognized by naturally acquired antibodies from individuals of the Brazilian endemic areas with different levels of transmission. The higher prevalence of individuals with antibodies against GMZ2.6c when compared to its individual components may suggest an additive effect of GLURP, MSP-3, and Pfs48/45 when inserted in a same construct. Furthermore, naturally malaria-exposed individuals predominantly had IgG1 and IgG3 cytophilic anti-GMZ2.6c antibodies, an important fact considering that the acquisition of anti-malaria protective immunity results from a delicate balance between cytophilic/non-cytophilic antibodies. Interestingly, anti-GMZ2.6c antibodies seem to increase with exposure to malaria infection and may contribute to parasite immunity. CONCLUSIONS: The data showed that GMZ2.6c protein is widely recognized by naturally acquired antibodies from individuals living in malaria-endemic areas in Brazil and that these may contribute to parasite immunity. These data highlight the importance of GMZ2.6c as a candidate for an anti-malarial vaccine.
Subject(s)
Antibody Formation , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Membrane Glycoproteins/immunology , Peptide Fragments/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Brazil , Female , Humans , Male , Middle Aged , Young AdultABSTRACT
The Plasmodium vivax Ookinete Surface Protein (Pvs25) is one of the leading malaria Transmission-Blocking Vaccine candidates based on its high immunogenicity in animal models, transmission-blocking activity of antibodies elicited in clinical trials and high conservation among P.â¯vivax isolates from endemic areas. However, the polymorphism in gene encoding Pvs25 in endemic areas from South America has been poorly studied so far. Here, we investigated the genetic polymorphism of pvs25 in P.â¯vivax isolates from five different regions of the Brazilian Amazon (Cruzeiro do Sul, Mâncio Lima, Guajará, Manaus and Oiapoque) and its impact on antigenicity of predicted B-cell epitopes using gene sequencing and epitope prediction tools. Firstly, only a non-synonymous substitution was found in the 657â¯bp amplified fragment in all sequenced samples, which represented an exchange of Gln by Lys at position 87 (Q87K) of protein amino acid sequence (domain II EGF-like). Q87K substitution was also present in all studied sites with a total frequency of 37.8%. Cruzeiro do Sul presented Q87K substitution in almost half of the isolates (48.4%), and an expressive frequency (40.5%) was also found in Manaus, while in Mâncio Lima, Guajará and Oiapoque, the frequencies were low (23.5%, 25% and 22.2% respectively). We also observed the Q87K mutation in a predicted B-cell epitope of pvs25, with no significant changes on its putative antigenicity. Our data suggest that the pvs25 gene is conserved among isolates from different Brazilian Amazon geographic regions, an important observation considering the antigen potentiality as a vaccine candidate to cover distinct P.â¯vivax endemic areas worldwide.