Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 176(6): 1265-1281.e24, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30827681

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. VIDEO ABSTRACT.


Subject(s)
Leukemia, Myeloid, Acute/genetics , Transcriptome/genetics , Adult , Base Sequence/genetics , Bone Marrow , Bone Marrow Cells/cytology , Cell Line, Tumor , Disease Progression , Female , Genotype , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/physiopathology , Machine Learning , Male , Middle Aged , Mutation , Prognosis , RNA , Signal Transduction , Single-Cell Analysis/methods , Tumor Microenvironment , Exome Sequencing/methods
2.
Nature ; 630(8015): 198-205, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38720074

ABSTRACT

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase , Leukemia , Signal Transduction , p21-Activated Kinases , Animals , Humans , Mice , Cell Line , Class Ib Phosphatidylinositol 3-Kinase/genetics , Class Ib Phosphatidylinositol 3-Kinase/metabolism , Cytarabine/pharmacology , Cytarabine/therapeutic use , Leukemia/drug therapy , Leukemia/enzymology , Leukemia/genetics , Leukemia/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , p21-Activated Kinases/antagonists & inhibitors , p21-Activated Kinases/metabolism , Phosphorylation , Xenograft Model Antitumor Assays
3.
Nature ; 627(8003): 389-398, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38253266

ABSTRACT

The human blood system is maintained through the differentiation and massive amplification of a limited number of long-lived haematopoietic stem cells (HSCs)1. Perturbations to this process underlie diverse diseases, but the clonal contributions to human haematopoiesis and how this changes with age remain incompletely understood. Although recent insights have emerged from barcoding studies in model systems2-5, simultaneous detection of cell states and phylogenies from natural barcodes in humans remains challenging. Here we introduce an improved, single-cell lineage-tracing system based on deep detection of naturally occurring mitochondrial DNA mutations with simultaneous readout of transcriptional states and chromatin accessibility. We use this system to define the clonal architecture of HSCs and map the physiological state and output of clones. We uncover functional heterogeneity in HSC clones, which is stable over months and manifests as both differences in total HSC output and biases towards the production of different mature cell types. We also find that the diversity of HSC clones decreases markedly with age, leading to an oligoclonal structure with multiple distinct clonal expansions. Our study thus provides a clonally resolved and cell-state-aware atlas of human haematopoiesis at single-cell resolution, showing an unappreciated functional diversity of human HSC clones and, more broadly, paving the way for refined studies of clonal dynamics across a range of tissues in human health and disease.


Subject(s)
Cell Lineage , Hematopoiesis , Hematopoietic Stem Cells , Humans , Chromatin/genetics , Chromatin/metabolism , Clone Cells/classification , Clone Cells/cytology , Clone Cells/metabolism , DNA, Mitochondrial/genetics , Hematopoietic Stem Cells/classification , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Mutation , Single-Cell Analysis , Transcription, Genetic , Aging
4.
Nature ; 618(7966): 834-841, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37286599

ABSTRACT

Tumours most often arise from progression of precursor clones within a single anatomical niche. In the bone marrow, clonal progenitors can undergo malignant transformation to acute leukaemia, or differentiate into immune cells that contribute to disease pathology in peripheral tissues1-4. Outside the marrow, these clones are potentially exposed to a variety of tissue-specific mutational processes, although the consequences of this are unclear. Here we investigate the development of blastic plasmacytoid dendritic cell neoplasm (BPDCN)-an unusual form of acute leukaemia that often presents with malignant cells isolated to the skin5. Using tumour phylogenomics and single-cell transcriptomics with genotyping, we find that BPDCN arises from clonal (premalignant) haematopoietic precursors in the bone marrow. We observe that BPDCN skin tumours first develop at sun-exposed anatomical sites and are distinguished by clonally expanded mutations induced by ultraviolet (UV) radiation. A reconstruction of tumour phylogenies reveals that UV damage can precede the acquisition of alterations associated with malignant transformation, implicating sun exposure of plasmacytoid dendritic cells or committed precursors during BPDCN pathogenesis. Functionally, we find that loss-of-function mutations in Tet2, the most common premalignant alteration in BPDCN, confer resistance to UV-induced cell death in plasmacytoid, but not conventional, dendritic cells, suggesting a context-dependent tumour-suppressive role for TET2. These findings demonstrate how tissue-specific environmental exposures at distant anatomical sites can shape the evolution of premalignant clones to disseminated cancer.


Subject(s)
Cell Transformation, Neoplastic , Dendritic Cells , Leukemia, Myeloid, Acute , Skin Neoplasms , Skin , Ultraviolet Rays , Humans , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , Bone Marrow Cells/radiation effects , Cell Death/radiation effects , Cell Lineage/genetics , Cell Lineage/radiation effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Cell Transformation, Neoplastic/radiation effects , Clone Cells/metabolism , Clone Cells/pathology , Clone Cells/radiation effects , Dendritic Cells/metabolism , Dendritic Cells/pathology , Dendritic Cells/radiation effects , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation/radiation effects , Organ Specificity , Single-Cell Gene Expression Analysis , Skin Neoplasms/etiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Ultraviolet Rays/adverse effects , Skin/pathology , Skin/radiation effects
5.
Blood ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38985829

ABSTRACT

Recent advancements in single-cell genomics have enriched our understanding of hematopoiesis, providing intricate details about hematopoietic stem cell (HSC) biology, differentiation, and lineage commitment. Technological advancements have highlighted extensive heterogeneity of cell populations and continuity of differentiation routes. Nevertheless, intermediate 'attractor' states signify structure in stem and progenitor populations that link state transition dynamics to fate potential. We discuss how innovative model systems quantify lineage bias and how stress accelerates differentiation, thereby reducing fate plasticity compared to native hematopoiesis. We conclude by offering our perspective on the current model of hematopoiesis and discuss how a more precise understanding can translate to strategies that extend healthy hematopoiesis and prevent disease.

6.
Blood ; 139(3): 357-368, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34855941

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is associated with age and smoking, but other determinants of the disease are incompletely understood. Clonal hematopoiesis of indeterminate potential (CHIP) is a common, age-related state in which somatic mutations in clonal blood populations induce aberrant inflammatory responses. Patients with CHIP have an elevated risk for cardiovascular disease, but the association of CHIP with COPD remains unclear. We analyzed whole-genome sequencing and whole-exome sequencing data to detect CHIP in 48 835 patients, of whom 8444 had moderate to very severe COPD, from four separate cohorts with COPD phenotyping and smoking history. We measured emphysema in murine models in which Tet2 was deleted in hematopoietic cells. In the COPDGene cohort, individuals with CHIP had risks of moderate-to-severe, severe, or very severe COPD that were 1.6 (adjusted 95% confidence interval [CI], 1.1-2.2) and 2.2 (adjusted 95% CI, 1.5-3.2) times greater than those for noncarriers. These findings were consistently observed in three additional cohorts and meta-analyses of all patients. CHIP was also associated with decreased FEV1% predicted in the COPDGene cohort (mean between-group differences, -5.7%; adjusted 95% CI, -8.8% to -2.6%), a finding replicated in additional cohorts. Smoke exposure was associated with a small but significant increased risk of having CHIP (odds ratio, 1.03 per 10 pack-years; 95% CI, 1.01-1.05 per 10 pack-years) in the meta-analysis of all patients. Inactivation of Tet2 in mouse hematopoietic cells exacerbated the development of emphysema and inflammation in models of cigarette smoke exposure. Somatic mutations in blood cells are associated with the development and severity of COPD, independent of age and cumulative smoke exposure.


Subject(s)
Clonal Hematopoiesis , Pulmonary Disease, Chronic Obstructive/genetics , Animals , Female , Humans , Male , Mice , Middle Aged , Odds Ratio , Pulmonary Disease, Chronic Obstructive/etiology , Risk Factors , Smoking/adverse effects , Exome Sequencing
7.
Mol Cell ; 61(1): 170-80, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26687680

ABSTRACT

Genome-wide profiling of histone modifications can provide systematic insight into the regulatory elements and programs engaged in a given cell type. However, conventional chromatin immunoprecipitation and sequencing (ChIP-seq) does not capture quantitative information on histone modification levels, requires large amounts of starting material, and involves tedious processing of each individual sample. Here, we address these limitations with a technology that leverages DNA barcoding to profile chromatin quantitatively and in multiplexed format. We concurrently map relative levels of multiple histone modifications across multiple samples, each comprising as few as a thousand cells. We demonstrate the technology by monitoring dynamic changes following inhibition of p300, EZH2, or KDM5, by linking altered epigenetic landscapes to chromatin regulator mutations, and by mapping active and repressive marks in purified human hematopoietic stem cells. Hence, this technology enables quantitative studies of chromatin state dynamics across rare cell types, genotypes, environmental conditions, and drug treatments.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin Immunoprecipitation/methods , Chromatin/metabolism , Hematopoietic Stem Cells/metabolism , High-Throughput Nucleotide Sequencing/methods , Histones/metabolism , Leukemia/metabolism , Multiplex Polymerase Chain Reaction/methods , Chromatin/genetics , Chromatin Assembly and Disassembly/drug effects , DNA Barcoding, Taxonomic , Epigenesis, Genetic/drug effects , Gene Expression Profiling , Gene Expression Regulation, Leukemic , Histones/genetics , Humans , K562 Cells , Leukemia/genetics , Mutation
8.
Bioinformatics ; 38(14): 3645-3647, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35674381

ABSTRACT

SUMMARY: Diversity of the T-cell receptor (TCR) repertoire is central to adaptive immunity. The TCR is composed of α and ß chains, encoded by the TRA and TRB genes, of which the variable regions determine antigen specificity. To generate novel biological insights into the complex functioning of immune cells, combined capture of variable regions and single-cell transcriptomes provides a compelling approach. Recent developments enable the enrichment of TRA and TRB variable regions from widely used technologies for 3'-based single-cell RNA-sequencing (scRNA-seq). However, a comprehensive computational pipeline to process TCR-enriched data from 3' scRNA-seq is not available. Here, we present an analysis pipeline to process TCR variable regions enriched from 3' scRNA-seq cDNA. The tool reports TRA and TRB nucleotide and amino acid sequences linked to cell barcodes, enabling the reconstruction of T-cell clonotypes with associated transcriptomes. We demonstrate the software using peripheral blood mononuclear cells from a healthy donor and detect TCR sequences in a high proportion of single T cells. Detection of TCR sequences is low in non-T-cell populations, demonstrating specificity. Finally, we show that TCR clones are larger in CD8 Memory T cells than in other T-cell types, indicating an association between T-cell clonotypes and differentiation states. AVAILABILITY AND IMPLEMENTATION: The Workflow for Association of T-cell receptors from 3' single-cell RNA-seq (WAT3R), including test data, is available on GitHub (https://github.com/mainciburu/WAT3R), Docker Hub (https://hub.docker.com/r/mainciburu/wat3r) and a workflow on the Terra platform (https://app.terra.bio). The test dataset is available on GEO (accession number GSE195956). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Leukocytes, Mononuclear , Receptors, Antigen, T-Cell , Leukocytes, Mononuclear/metabolism , Receptors, Antigen, T-Cell/chemistry , Software , Clone Cells/metabolism , RNA , Single-Cell Analysis , Receptors, Antigen, T-Cell, alpha-beta/genetics
9.
Arterioscler Thromb Vasc Biol ; 41(3): 1012-1018, 2021 03.
Article in English | MEDLINE | ID: mdl-33441024

ABSTRACT

The blood system is often represented as a tree-like structure with stem cells that give rise to mature blood cell types through a series of demarcated steps. Although this representation has served as a model of hierarchical tissue organization for decades, single-cell technologies are shedding new light on the abundance of cell type intermediates and the molecular mechanisms that ensure balanced replenishment of differentiated cells. In this Brief Review, we exemplify new insights into blood cell differentiation generated by single-cell RNA sequencing, summarize considerations for the application of this technology, and highlight innovations that are leading the way to understand hematopoiesis at the resolution of single cells. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Hematopoiesis/genetics , RNA-Seq/methods , Single-Cell Analysis/methods , Animals , Computational Biology/methods , Computational Biology/trends , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , RNA-Seq/statistics & numerical data , RNA-Seq/trends , Single-Cell Analysis/statistics & numerical data , Single-Cell Analysis/trends
10.
Blood ; 133(20): 2198-2211, 2019 05 16.
Article in English | MEDLINE | ID: mdl-30796022

ABSTRACT

There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. A consistent effect observed for the top hits was the ability to restrain early repopulation kinetics while preserving regenerative potential. Overexpression (OE) of the most promising candidate, the orphan gene C3orf54/INKA1, in a patient-derived AML model (8227) promoted the retention of LSCs in a primitive state manifested by relative expansion of CD34+ cells, accumulation of cells in G0, and reduced output of differentiated progeny. Despite delayed early repopulation, at later times, INKA1-OE resulted in the expansion of self-renewing LSCs. In contrast, INKA1 silencing in primary AML reduced regenerative potential. Mechanistically, our multidimensional confocal analysis found that INKA1 regulates G0 exit by interfering with nuclear localization of its target PAK4, with concomitant reduction of global H4K16ac levels. These data identify INKA1 as a novel regulator of LSC latency and reveal a link between the regulation of stem cell kinetics and pool size during regeneration.


Subject(s)
Gene Expression Regulation, Leukemic , Intracellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Neoplastic Stem Cells/metabolism , Animals , Cell Cycle Checkpoints , Cell Line, Tumor , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice, Inbred NOD , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Up-Regulation , p21-Activated Kinases/analysis
11.
Blood ; 141(19): 2292-2293, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37166926
12.
Nature ; 510(7504): 268-72, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24776803

ABSTRACT

The blood system is sustained by a pool of haematopoietic stem cells (HSCs) that are long-lived due to their capacity for self-renewal. A consequence of longevity is exposure to stress stimuli including reactive oxygen species (ROS), nutrient fluctuation and DNA damage. Damage that occurs within stressed HSCs must be tightly controlled to prevent either loss of function or the clonal persistence of oncogenic mutations that increase the risk of leukaemogenesis. Despite the importance of maintaining cell integrity throughout life, how the HSC pool achieves this and how individual HSCs respond to stress remain poorly understood. Many sources of stress cause misfolded protein accumulation in the endoplasmic reticulum (ER), and subsequent activation of the unfolded protein response (UPR) enables the cell to either resolve stress or initiate apoptosis. Here we show that human HSCs are predisposed to apoptosis through strong activation of the PERK branch of the UPR after ER stress, whereas closely related progenitors exhibit an adaptive response leading to their survival. Enhanced ER protein folding by overexpression of the co-chaperone ERDJ4 (also called DNAJB9) increases HSC repopulation capacity in xenograft assays, linking the UPR to HSC function. Because the UPR is a focal point where different sources of stress converge, our study provides a framework for understanding how stress signalling is coordinated within tissue hierarchies and integrated with stemness. Broadly, these findings reveal that the HSC pool maintains clonal integrity by clearance of individual HSCs after stress to prevent propagation of damaged stem cells.


Subject(s)
Endoplasmic Reticulum Stress , Hematopoietic Stem Cells/cytology , Unfolded Protein Response/physiology , Activating Transcription Factor 4/metabolism , Animals , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Eukaryotic Initiation Factor-2/metabolism , HSP40 Heat-Shock Proteins/metabolism , Hematopoietic Stem Cells/drug effects , Heterografts , Humans , Male , Membrane Proteins/metabolism , Mice , Molecular Chaperones/metabolism , Protein Folding , Protein Phosphatase 1/metabolism , Signal Transduction , Transcription Factor CHOP/metabolism , Tunicamycin/pharmacology , Unfolded Protein Response/drug effects , eIF-2 Kinase/metabolism
13.
14.
Blood ; 139(6): 802-804, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35142852
15.
Blood ; 126(16): 1930-9, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26320100

ABSTRACT

Fetal hemoglobin (HbF, α2γ2) induction is a well-validated strategy for sickle cell disease (SCD) treatment. Using a small-molecule screen, we found that UNC0638, a selective inhibitor of EHMT1 and EHMT2 histone methyltransferases, induces γ-globin expression. EHMT1/2 catalyze mono- and dimethylation of lysine 9 on histone 3 (H3K9), raising the possibility that H3K9Me2, a repressive chromatin mark, plays a role in silencing γ-globin expression. In primary human adult erythroid cells, UNC0638 and EHMT1 or EHMT2 short hairpin RNA-mediated knockdown significantly increased γ-globin expression, HbF synthesis, and the percentage of cells expressing HbF. At effective concentrations, UNC0638 did not alter cell morphology, proliferation, or erythroid differentiation of primary human CD34(+) hematopoietic stem and progenitor cells in culture ex vivo. In murine erythroleukemia cells, UNC0638 and Ehmt2 CRISPR/Cas9-mediated knockout both led to a marked increase in expression of embryonic ß-globin genes Hbb-εy and Hbb-ßh1. In primary human adult erythroblasts, chromatin immunoprecipitation followed by sequencing analysis revealed that UNC0638 treatment leads to genome-wide depletion in H3K9Me2 and a concomitant increase in the activating mark H3K9Ac, which was especially pronounced at the γ-globin gene region. In RNA-sequencing analysis of erythroblasts, γ-globin genes were among the most significantly upregulated genes by UNC0638. Further increase in γ-globin expression in primary human adult erythroid cells was achieved by combining EHMT1/2 inhibition with the histone deacetylase inhibitor entinostat or hypomethylating agent decitabine. Our data provide genetic and pharmacologic evidence that EHMT1 and EHMT2 are epigenetic regulators involved in γ-globin repression and represent a novel therapeutic target for SCD.


Subject(s)
Epigenesis, Genetic/drug effects , Erythroblasts/metabolism , Fetal Hemoglobin/biosynthesis , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Quinazolines/pharmacology , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/metabolism , Animals , Cell Line, Tumor , Erythroblasts/cytology , Erythroid Cells/cytology , Erythroid Cells/metabolism , Female , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Male , Mice
16.
Cancer Res Commun ; 4(3): 895-910, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38466569

ABSTRACT

Profiling hematopoietic and immune cells provides important information about disease risk, disease status, and therapeutic responses. Spectral flow cytometry enables high-dimensional single-cell evaluation of large cohorts in a high-throughput manner. Here, we designed, optimized, and implemented new methods for deep immunophenotyping of human peripheral blood and bone marrow by spectral flow cytometry. Two blood antibody panels capture 48 cell-surface markers to assess more than 58 cell phenotypes, including subsets of T cells, B cells, monocytes, natural killer (NK) cells, and dendritic cells, and their respective markers of exhaustion, activation, and differentiation in less than 2 mL of blood. A bone marrow antibody panel captures 32 markers for 35 cell phenotypes, including stem/progenitor populations, T-cell subsets, dendritic cells, NK cells, and myeloid cells in a single tube. We adapted and developed innovative flow cytometric analysis algorithms, originally developed for single-cell genomics, to improve data integration and visualization. We also highlight technical considerations for users to ensure data fidelity. Our protocol and analysis pipeline accurately identifies rare cell types, discerns differences in cell abundance and phenotype across donors, and shows concordant immune landscape trends in patients with known hematologic malignancy. SIGNIFICANCE: This study introduces optimized methods and analysis algorithms that enhance capabilities in comprehensive immunophenotyping of human blood and bone marrow using spectral flow cytometry. This approach facilitates detection of rare cell types, enables measurement of cell variations across donors, and provides proof-of-concept in identifying known hematologic malignancies. By unlocking complexities of hematopoietic and immune landscapes at the single-cell level, this advancement holds potential for understanding disease states and therapeutic responses.


Subject(s)
Bone Marrow , Monocytes , Humans , Flow Cytometry/methods , Myeloid Cells , Immunophenotyping
17.
Blood Adv ; 8(14): 3665-3678, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38507736

ABSTRACT

ABSTRACT: Clonal hematopoiesis (CH) is an age-associated phenomenon that increases the risk of hematologic malignancy and cardiovascular disease. CH is thought to enhance disease risk through inflammation in the peripheral blood.1 Here, we profile peripheral blood gene expression in 66 968 single cells from a cohort of 17 patients with CH and 7 controls. Using a novel mitochondrial DNA barcoding approach, we were able to identify and separately compare mutant Tet methylcytosine dioxygenase 2 (TET2) and DNA methyltransferase 3A (DNMT3A) cells with nonmutant counterparts. We discovered the vast majority of mutated cells were in the myeloid compartment. Additionally, patients harboring DNMT3A and TET2 CH mutations possessed a proinflammatory profile in CD14+ monocytes through previously unrecognized pathways such as galectin and macrophage inhibitory factor. We also found that T cells from patients with CH, although mostly unmutated, had decreased expression of GTPase of the immunity associated protein genes, which are critical to T-cell development, suggesting that CH impairs T-cell function.


Subject(s)
Clonal Hematopoiesis , Inflammation , Humans , Inflammation/genetics , Genotype , Mutation , Gene Expression Profiling , Dioxygenases , DNA Methyltransferase 3A/metabolism , Male , Female , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
18.
J Clin Invest ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916965

ABSTRACT

Leukemia relapse is a major cause of death after allogeneic hematopoietic cell transplantation (allo-HCT). We tested the potential of targeting TIM-3 for improving graft-versus-leukemia (GVL) effects. We observed differential expression of TIM-3 ligands when hematopoietic stem cells overexpressed certain oncogenic-driver mutations. Anti-TIM-3 Ab-treatment improved survival of mice bearing leukemia with oncogene-induced TIM-3 ligand expression. Conversely, leukemia cells with low ligand expression were anti-TIM-3 treatment-resistant. In vitro, TIM-3 blockade or genetic deletion in CD8+ T cells (Tc) enhanced Tc activation, proliferation and IFN-γ production while enhancing GVL effects, preventing Tc exhaustion and improving Tc cytotoxicity and glycolysis in vivo. Conversely, TIM-3 deletion in myeloid cells did not affect allogeneic Tc proliferation and activation in vitro, suggesting that anti-TIM-3-treatment-mediated GVL effects are Tc-induced. In contrast to anti-PD-1 and anti-CTLA-4-treatment, anti-TIM-3-treatment did not enhance acute graft-versus-host-disease (aGVHD). TIM-3 and its ligands were frequently expressed in acute myeloid leukemia (AML) cells of patients with post-allo-HCT relapse. We deciphered the connection between oncogenic mutations found in AML and TIM-3 ligands expression and identify anti-TIM-3-treatment as a strategy to enhance GVL effects via metabolic and transcriptional Tc-reprogramming, without exacerbation of aGVHD. Our findings support clinical testing of anti-TIM-3 Abs in patients with AML relapse post-allo-HCT.

19.
Antimicrob Agents Chemother ; 57(10): 4794-800, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23877685

ABSTRACT

The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrates of the bacterial coenzyme A (CoA) biosynthetic pathway, causing cellular CoA depletion and interference with fatty acid synthesis. In spite of their potential use and selectivity for bacterial metabolic routes, these compounds have never made it to the clinic. In the present study, we show that pantothenamides are not active as antibiotics in the presence of serum, and we found that they were hydrolyzed by ubiquitous pantetheinases of the vanin family. To address this further, we synthesized a series of pantetheinase inhibitors based on a pantothenate scaffold that inhibited serum pantetheinase activity in the nanomolar range. Mass spectrometric analysis showed that addition of these pantetheinase inhibitors prevented hydrolysis of pantothenamides by serum. We found that combinations of these novel pantetheinase inhibitors and prototypic pantothenamides like N5-Pan and N7-Pan exerted antimicrobial activity in vitro, particularly against Gram-positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Streptococcus pyogenes) even in the presence of serum. These results indicate that pantothenamides, when protected against degradation by host pantetheinases, are potentially useful antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria/drug effects , Pantothenic Acid/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Pantothenic Acid/analogs & derivatives , Pantothenic Acid/chemistry , Staphylococcus aureus/drug effects , Streptococcus pneumoniae/drug effects , Streptococcus pyogenes/drug effects
20.
Front Microbiol ; 14: 1151097, 2023.
Article in English | MEDLINE | ID: mdl-37032882

ABSTRACT

Production of organic molecules is largely depending on fossil fuels. A sustainable alternative would be the synthesis of these compounds from CO2 and a cheap energy source, such as H2, CH4, NH3, CO, sulfur compounds or iron(II). Volcanic and geothermal areas are rich in CO2 and reduced inorganic gasses and therefore habitats where novel chemolithoautotrophic microorganisms for the synthesis of organic compounds could be discovered. Here we describe "Candidatus Hydrogenisulfobacillus filiaventi" R50 gen. nov., sp. nov., a thermoacidophilic, autotrophic H2-oxidizing microorganism, that fixed CO2 and excreted no less than 0.54 mol organic carbon per mole fixed CO2. Extensive metabolomics and NMR analyses revealed that Val, Ala and Ile are the most dominant form of excreted organic carbon while the aromatic amino acids Tyr and Phe, and Glu and Lys were present at much lower concentrations. In addition to these proteinogenic amino acids, the excreted carbon consisted of homoserine lactone, homoserine and an unidentified amino acid. The biological role of the excretion remains uncertain. In the laboratory, we noticed the production under high growth rates (0.034 h-1, doubling time of 20 h) in combination with O2-limitation, which will most likely not occur in the natural habitat of this strain. Nevertheless, this large production of extracellular organic molecules from CO2 may open possibilities to use chemolithoautotrophic microorganisms for the sustainable production of important biomolecules.

SELECTION OF CITATIONS
SEARCH DETAIL