Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nucl Med Biol ; 35(8): 839-49, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19026945

ABSTRACT

Medullary thyroid carcinoma (MTC) expresses CCK-2 receptors. (111)In-labeled DOTA-DGlu-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH(2) (DOTA-MG11), DOTA-DAsp-Tyr-Nle-Gly-Trp-Nle-Asp-Phe-NH(2) (DOTA-CCK), and (99m)Tc-labeled N(4)-Gly-DGlu-(Glu)(5)-Ala-Tyr-Gly-Trp-Met-Asp-Phe-NH(2) ((99m)Tc-Demogastrin 2) are analogs developed for CCK-2 receptor-targeted scintigraphy. All 3 radiolabeled analogs were selected on the basis of their high CCK-2 receptor affinity and their good in vitro serum stability, with in vitro serum t(1/2) values of several hours. Radiolabeling of DOTA-peptides with (111)In requires a heating procedure, typically in the range of 80 degrees -100 degrees C up to 30 min. Following this procedure with DOTA-MG11 resulted in a >98 % incorporation of (111)In, however, with a radiochemical purity (RCP) of <50 %. The decrease in RCP was found to be due to oxidation of the methionine residue in the molecule. Moreover, this oxidized compound lost its CCK-2 receptor affinity. Therefore, conditions during radiolabeling were optimised: labeling of DOTA-MG11 and DOTA-CCK with (111)In involved 5 min heating at 80 degrees C and led to an incorporation of (111)In of >98 %. In addition, all analogs were radiolabeled in the presence of quenchers to prevent radiolysis and oxidation resulting in a RCP of >90 %. All 3 radiolabeled analogs were i.v. administered to 6 MTC patients: radioactivity cleared rapidly by the kidneys, with no significant differences in the excretion pattern of the 3 radiotracers. All 3 radiolabeled analogs exhibited a low in vivo stability in patients, as revealed during analysis of blood samples, with the respective t(1/2) found in the order of minutes. In patient blood, the rank of radiopeptide in vivo stability was: (99m)Tc-Demogastrin 2 (t(1/2) 10-15 min)>(111)In-DOTA-CCK (t(1/2) approximately 5-10 min)>(111)In-DOTA-MG11 (t(1/2)<5 min).


Subject(s)
Carcinoma, Medullary/diagnostic imaging , Isotope Labeling , Radioligand Assay , Radiopharmaceuticals/metabolism , Receptor, Cholecystokinin B/metabolism , Thyroid Neoplasms/diagnostic imaging , Adolescent , Adult , Aged , Autoradiography , Chromatography, High Pressure Liquid , Drug Stability , Female , Gastrins/metabolism , Humans , Male , Middle Aged , Radionuclide Imaging , Radiopharmaceuticals/chemistry , Receptor, Cholecystokinin B/analysis
2.
J Nucl Med ; 42(12): 1841-6, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11752083

ABSTRACT

UNLABELLED: A promising application of radiolabeled somatostatin analogs is peptide receptor-targeted radionuclide therapy of somatostatin receptor-expressing tumors. A suitable radionuclide is (90)Y, which emits high-energy beta-particles with a pathlength of several millimeters in tissue, making it especially promising for treatment of large tumors. METHODS: We investigated the radiotherapeutic effect of different activities (111 and 370 MBq) of [(90)Y-1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tetraacetic acid (DOTA)(0),Tyr(3)]octreotide in Lewis rats bearing somatostatin receptor-positive rat pancreatic CA20948 tumors of different size (0.08-15 cm(2)) in their flank. RESULTS: Dose-dependent radiotherapeutic effects of (90)Y-labeled octreotide in this rat tumor model were found. Tumor control (100% complete response) was found in animals bearing tumors of 3-9 cm(2) (mean, 7.8 cm(2)) after intravenous injection of the highest activity (370 MBq [(90)Y-DOTA(0),Tyr(3)]octreotide). In rats bearing tumors of < or =1 cm(2) or > or =14 cm(2), the effects were less pronounced (50% and 0% complete response, respectively). In tumors of < or =1 cm(2) the (90)Y radiation energy will not be absorbed completely in the tumor, whereas in tumors of > or =14 cm(2) the increased number of clonogenic and probably hypoxic tumor cells may explain the failure to reach a cure. CONCLUSION: This study shows the ability of [(90)Y-DOTA(0),Tyr(3)]octreotide to control tumor growth, especially in medium-sized tumors. The effect of radionuclide therapy appeared to be dependent on tumor size at the onset of therapy.


Subject(s)
Octreotide/analogs & derivatives , Octreotide/therapeutic use , Pancreatic Neoplasms/radiotherapy , Radiopharmaceuticals/therapeutic use , Yttrium Radioisotopes/therapeutic use , Animals , Dose-Response Relationship, Radiation , Male , Neoplasm Transplantation , Pancreatic Neoplasms/mortality , Rats , Rats, Inbred Lew , Receptors, Somatostatin/radiation effects
3.
Nucl Med Commun ; 19(3): 283-8, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9625504

ABSTRACT

We compared the internalization of [90Y-DOTA0,Tyr3]octreotide and [111In-DOTA0,Tyr3]octreotide with that of [125I-Tyr3]octreotide and [111In-DTPA0]octreotide in the subtype 2 somatostatin receptor (sst2)-positive rat pancreatic tumour cell lines CA20948 and AR42J and in the somatostatin receptor-negative human anaplastic thyroid tumour cell line ARO. We demonstrated that [111In-DTPA0]octreotide, [90Y-DOTA0,Tyr3]octreotide and [111In-DOTA0,Tyr3]octreotide are internalized by a receptor-specific, time- and temperature-dependent process. The amount of [90Y-DOTA0,Tyr3]octreotide internalized was higher than that of [111In-DOTA0,Tyr3]octreotide and [111In-DTPA0]octreotide.


Subject(s)
Octreotide/pharmacokinetics , Pancreatic Neoplasms/metabolism , Pentetic Acid/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Receptors, Somatostatin/metabolism , Thyroid Neoplasms/metabolism , Animals , Binding, Competitive , Biological Transport , Carcinoma/metabolism , Cell Line , Humans , Indium Radioisotopes/pharmacokinetics , Kinetics , Octreotide/analogs & derivatives , Pentetic Acid/analogs & derivatives , Rats , Temperature , Tumor Cells, Cultured , Yttrium Radioisotopes/pharmacokinetics
4.
Eur J Nucl Med Mol Imaging ; 33(11): 1346-51, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16847654

ABSTRACT

PURPOSE: Patients with somatostatin receptor subtype 2-positive metastasised neuroendocrine tumours can be treated with [(177)Lu-DOTA(0),Tyr(3)]octreotate. Some use octreotide as the peptide for peptide receptor radionuclide therapy (PRRT). We compared in seven patients [(177)Lu-DOTA(0),Tyr(3)]octreotide ((177)Lu-DOTATOC) and [(177)Lu-DOTA(0),Tyr(3)]octreotate ((177)Lu-DOTATATE), to see which peptide should be preferred for PRRT with (177)Lu. METHODS: In the same patients, 3,700 MBq (177)Lu-DOTATOC and 3,700 MBq (177)Lu-DOTATATE was administered in separate therapy sessions. Amino acids were co-administered. Whole-body scanning was performed on days 1, 4 and 7 post therapy. Blood and urine samples were collected. We calculated residence times for tumours, spleen and kidneys. RESULTS: All patients had longer residence times in spleen, kidneys and tumours after use of (177)Lu-DOTATATE (p=0.016 in each case). Comparing (177)Lu-DOTATATE with (177)Lu-DOTATOC, the mean residence time ratio was 2.1 for tumour, 1.5 for spleen and 1.4 for kidneys. Dose-limiting factors for PRRT are bone marrow and/or kidney dose. Although the residence time for kidneys was longer when using (177)Lu-DOTATATE, the mean administered dose to tumours would still be advantageous by a factor of 1.5, assuming a fixed maximum kidney dose is reached. Plasma radioactivity after (177)Lu-DOTATATE was comparable to that after (177)Lu-DOTATOC. Urinary excretion of radioactivity was comparable during the first 6 h; thereafter there was a significant advantage for (177)Lu-DOTATOC. CONCLUSION: (177)Lu-DOTATATE had a longer tumour residence time than (177)Lu-DOTATOC. Despite a longer residence time in kidneys after (177)Lu-DOTATATE, tumour dose will always be higher. Therefore, we conclude that the better peptide for PRRT is octreotate.


Subject(s)
Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/radiotherapy , Octreotide/analogs & derivatives , Organometallic Compounds/pharmacokinetics , Organometallic Compounds/therapeutic use , Adult , Aged , Female , Humans , Male , Metabolic Clearance Rate , Middle Aged , Octreotide/pharmacokinetics , Octreotide/therapeutic use , Organ Specificity , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/therapeutic use , Tissue Distribution
5.
Ann Hum Biol ; 29(3): 237-46, 2002.
Article in English | MEDLINE | ID: mdl-12031134

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate the current validity of an interviewer-administered physical activity questionnaire against measurement of physical activity from vertical body accelerometer movements in prepubertal and pubertal children. METHODS: The Weight Bearing Activity Questionnaire for Kids (WBAQK) is an interviewer-administered questionnaire with a recall over 7 days and developed to assess weight-bearing activity in pre-pubertal and pubertal children. The Caltrac(TM) accelerometer was worn for 4-5 days (including 1 weekend day). Thirty-seven schoolgirls and 35 schoolboys participated, with a mean age of 11.2 0.3 years and 12.1 0.2 years, respectively. RESULTS: Weight-Bearing Score (WBS) and Metabolic Score (MS) derived from the WBAQK were significantly and positively related to the score of the Caltrac(TM). Weight-Bearing Score showed higher correlations in both boys (0.59) and girls (0.53) and slightly better compared to MS (0.54 and 0.35). The classification of boys and girls into high and low activity groups resulted also in a better agreement of WBS (71-72%) than of MS (60-67%) with Caltrac(TM). CONCLUSIONS: We conclude that the amount of weight-bearing activity can be estimated with the interviewer-administered WBAQK in boys and girls between 8 and 14 years of age.


Subject(s)
Energy Metabolism , Weight-Bearing/physiology , Adolescent , Child , Exercise , Female , Humans , Male , Reproducibility of Results , Sex Distribution , Surveys and Questionnaires
6.
Eur J Nucl Med ; 26(7): 693-8, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10398816

ABSTRACT

Radiolabelled tumour receptor-binding peptides can be used for in vivo scintigraphic imaging. Recently, the somatostatin analogue [Tyr3]octreotide (D-Phe-c(Cys-Tyr-D-Trp-Lys-Thr-Cys)-Thr(ol)) was derivatized with the chelator DOTA (tetra-azacyclododecane-tetra-acetic acid), enabling stable radiolabelling with both the high-energy beta particle-emitter yttrium-90 and the Auger electron-emitter indium-111. The thus produced radiolabelled compounds are promising for peptide receptor radionuclide therapy. Our previous in vitro and in vivo (rat) experiments with these radiolabelled compounds showed favourable binding and biodistribution characteristics with high uptake and retention in the target organs. We also demonstrated receptor-specific, time- and temperature-dependent internalization of radiolabelled [DOTA0,Tyr3]octreotide in somatostatin receptor subtype 2 (sst2)-positive rat pancreatic tumour cell lines. In this study we have investigated the effects of differences in the amount of injected peptide on tissue distribution of 111In-labelled [DOTA0, Tyr3]octreotide in normal, i.e. non-tumour-bearing, and CA20948 tumour-bearing rats. This was done in order to find the amount of peptide at which the highest uptake in target tissues is achieved, and thereby to increase the potential of radionuclide therapy while simultaneously ensuring the lowest possible radiotoxicity in normal organs. Uptake of radiolabelled [DOTA0,Tyr3]octreotide in sst2-positive organs showed different bell-shaped functions of the amount of injected peptide, being highest at 0.05 (adrenals), 0.05-0. 1 (pituitary and stomach) and 0.25 (pancreas) microg. Uptake in the tumour was highest at 0.5 microg injected peptide. The highest uptake was found at peptide amounts that were lower than those reported for [111In-DTPA0]octreotide ((D-Phe-c(Cys-Phe-D-Trp-Lys-Thr-Cys)-Thr(ol), DTPA = diethylene-triamine-penta-acetic acid), consistent with the higher receptor affinity of the first compound. Our observations of mass-dependent differences in uptake of radiolabelled [DOTA0, Tyr3]octreotide, being the resultant of a positive effect of increasing amounts of peptide on, for example, receptor clustering and a negative effect of receptor saturation, are of consequence for rat radionuclide therapy studies with radiolabelled peptides and may also be of consequence for human radionuclide therapy studies with this compound.


Subject(s)
Indium Radioisotopes , Octreotide/analogs & derivatives , Pancreatic Neoplasms/diagnostic imaging , Radiopharmaceuticals , Animals , Octreotide/pharmacokinetics , Radionuclide Imaging , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Inbred Lew , Tissue Distribution
7.
Int J Cancer ; 92(5): 628-33, 2001 Jun 01.
Article in English | MEDLINE | ID: mdl-11340564

ABSTRACT

Receptor-targeted scintigraphy using radiolabeled somatostatin analogs such as octreotate is being used with great success to demonstrate the in vivo presence of somatostatin receptors on various tumors. A new and promising application for these analogs is radionuclide therapy. Radionuclides suitable for this application include the Auger electron-emitter (111)In and the beta-emitters (90)Y (high energy) and (177)Lu (low energy). We investigated [DOTA(0),Tyr(3)]octreotate, labeled with the lanthanide (177)Lu, in biodistribution and radionuclide therapy experiments using male Lewis rats bearing the somatostatin receptor-positive rat CA20948 pancreatic tumor. Biodistribution studies in Lewis rats showed the highest uptake in the rat pancreatic CA20948 tumor and sst(2)-positive organs, which include the adrenals, pituitary and pancreas, of [(177)Lu-DOTA(0),Tyr(3)]octreotate in comparison with (88)Y- and (111)In-labeled analogs. Kidney uptake of [(177)Lu-DOTA(0),Tyr(3)]octreotate could be reduced by approximately 40% by co-injection of 400 mg/kg D-lysine. In radionuclide therapy studies, a 100% cure rate was achieved in the groups of rats bearing small (< or =1 cm(2)) CA20948 tumors after 2 doses of 277.5 MBq or after a single dose of 555 MBq [(177)Lu-DOTA(0),Tyr(3)]octreotate. A cure rate of 75% was achieved after a single administration of 277.5 MBq. In rats bearing larger (> or =1 cm(2)) tumors, 40% and 50% cure rates were achieved in the groups that received 1 or 2 277.5 MBq injections of [(177)Lu-DOTA(0),Tyr(3)]octreotate, respectively. After therapy with [(177)Lu-DOTA(0),Tyr(3)]octreotide in rats bearing small tumors, these data were 40% cure after 1 injection with 277.5 MBq and 60% cure after 2 repeated injections. In conclusion, [(177)Lu-DOTA(0),Tyr(3)]octreotate has demonstrated excellent results in radionuclide therapy studies in rats, especially in animals bearing smaller tumors. This candidate molecule shows great promise for radionuclide therapy in patients with sst(2)-expressing tumors.


Subject(s)
Lutetium/therapeutic use , Octreotide/analogs & derivatives , Pancreatic Neoplasms/radiotherapy , Radioisotopes/therapeutic use , Receptors, Somatostatin/analysis , Animals , Autoradiography , Chelating Agents/therapeutic use , Kidney/metabolism , Male , Octreotide/therapeutic use , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/mortality , Radiotherapy Dosage , Rats , Rats, Inbred Lew , Survival Rate , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL