Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Am J Hum Genet ; 108(6): 1053-1068, 2021 06 03.
Article in English | MEDLINE | ID: mdl-33909990

ABSTRACT

Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD." All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations.


Subject(s)
Abnormalities, Multiple/pathology , Adenosine Triphosphatases/genetics , Craniofacial Abnormalities/pathology , DNA Methylation , Epigenesis, Genetic , Growth Disorders/pathology , Heart Septal Defects, Ventricular/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phenotype , Abnormalities, Multiple/genetics , Case-Control Studies , Cohort Studies , Craniofacial Abnormalities/genetics , Female , Genetic Predisposition to Disease , Growth Disorders/genetics , Heart Septal Defects, Ventricular/genetics , Humans , Infant, Newborn , Male , Neurodevelopmental Disorders/genetics
2.
Am J Med Genet A ; 173(10): 2763-2771, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28777491

ABSTRACT

Horstick et al. (2013) previously reported a homozygous p.Trp284Ser variant in STAC3 as the cause of Native American myopathy (NAM) in 5 Lumbee Native American families with congenital hypotonia and weakness, cleft palate, short stature, ptosis, kyphoscoliosis, talipes deformities, and susceptibility to malignant hyperthermia (MH). Here we present two non-Native American families, who were found to have STAC3 pathogenic variants. The first proband and her affected older sister are from a consanguineous Qatari family with a suspected clinical diagnosis of Carey-Fineman-Ziter syndrome (CFZS) based on features of hypotonia, myopathic facies with generalized weakness, ptosis, normal extraocular movements, cleft palate, growth delay, and kyphoscoliosis. We identified the homozygous c.851G>C;p.Trp284Ser variant in STAC3 in both sisters. The second proband and his affected sister are from a non-consanguineous, Puerto Rican family who was evaluated for a possible diagnosis of Moebius syndrome (MBS). His features included facial and generalized weakness, minimal limitation of horizontal gaze, cleft palate, and hypotonia, and he has a history of MH. The siblings were identified to be compound heterozygous for STAC3 variants c.851G>C;p.Trp284Ser and c.763_766delCTCT;p.Leu255IlefsX58. Given the phenotypic overlap of individuals with CFZS, MBS, and NAM, we screened STAC3 in 12 individuals diagnosed with CFZS and in 50 individuals diagnosed with MBS or a congenital facial weakness disorder. We did not identify any rare coding variants in STAC3. NAM should be considered in patients presenting with facial and generalized weakness, normal or mildly abnormal extraocular movement, hypotonia, cleft palate, and scoliosis, particularly if there is a history of MH.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Mobius Syndrome/genetics , Muscular Diseases/genetics , Mutation , Pierre Robin Syndrome/genetics , Adolescent , Adult , Child , Female , Humans , Male , Mobius Syndrome/complications , Mobius Syndrome/pathology , Muscular Diseases/complications , Muscular Diseases/pathology , Pedigree , Pierre Robin Syndrome/complications , Pierre Robin Syndrome/pathology , Prognosis , Young Adult
3.
Genet Med ; 17(11): 843-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25719457

ABSTRACT

Two proα1(IV) chains, encoded by COL4A1, form trimers that contain, in addition, a proα2(IV) chain encoded by COL4A2 and are the major component of the basement membrane in many tissues. Since 2005, COL4A1 mutations have been known as an autosomal dominant cause of hereditary porencephaly. COL4A1 and COL4A2 mutations have been reported with a broader spectrum of cerebrovascular, renal, ophthalmological, cardiac, and muscular abnormalities, indicated as "COL4A1 mutation-related disorders." Genetic counseling is challenging because of broad phenotypic variation and reduced penetrance. At the Erasmus University Medical Center, diagnostic DNA analysis of both COL4A1 and COL4A2 in 183 index patients was performed between 2005 and 2013. In total, 21 COL4A1 and 3 COL4A2 mutations were identified, mostly in children with porencephaly or other patterns of parenchymal hemorrhage, with a high de novo mutation rate of 40% (10/24). The observations in 13 novel families harboring either COL4A1 or COL4A2 mutations prompted us to review the clinical spectrum. We observed recognizable phenotypic patterns and propose a screening protocol at diagnosis. Our data underscore the importance of COL4A1 and COL4A2 mutations in cerebrovascular disease, also in sporadic patients. Follow-up data on symptomatic and asymptomatic mutation carriers are needed for prognosis and appropriate surveillance.


Subject(s)
Collagen Type IV/genetics , Genetic Association Studies , Mutation , Phenotype , Alleles , Anterior Eye Segment/abnormalities , Brain/pathology , Cerebral Hemorrhage/diagnosis , Cerebral Hemorrhage/genetics , Cohort Studies , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Eye Diseases, Hereditary , Family , Gene Order , Genetic Loci , Genotype , Humans , Leukomalacia, Periventricular/diagnosis , Leukomalacia, Periventricular/genetics , Magnetic Resonance Imaging/methods , Pedigree , Porencephaly/diagnosis , Porencephaly/genetics
4.
Am J Med Genet A ; 158A(1): 166-73, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22106008

ABSTRACT

Loss-of-function mutations of GLI2 are associated with features at the mild end of the holoprosencephaly spectrum, including abnormal pituitary gland formation and/or function, and craniofacial abnormalities. In addition patients may have branchial arch anomalies and polydactyly. Large, microscopically visible, interstitial deletions spanning 2q14.2 have been reported in patients with multiple congenital anomalies and intellectual disability. We report here on a patient with a mild holoprosencephaly spectrum phenotype (bilateral cleft lip and palate and abnormal pituitary gland formation with panhypopituitarism) and normal psychomotor development, who was found to carry a 1.3 Mb submicroscopic heterozygous deletion in 2q14.2, encompassing the GLI2 gene. We review the genotype and phenotype of previously published probands with GLI2 aberrations. Our findings confirm the association of haploinsufficiency of GLI2 and mild HPE spectrum features. Consistent with prior reports, we observed incomplete penetrance of the deletion in the family, illustrating the multifactorial etiology of holoprosencephaly spectrum features. In addition to the holoprosencephaly spectrum features, the proband had heterotaxy of the abdominal organs. Mutations in the known heterotaxy genes (NODAL, ZIC3 and CFC1) were excluded. The deletion contains five genes, in addition to GLI2, including the EPB4.1l5 gene. Based on findings in Epb4.1l5 mutant mice we hypothesize that Epb4.1l5 is a candidate gene for the heterotaxy observed in the proband.


Subject(s)
Chromosome Deletion , Gene Deletion , Heterotaxy Syndrome/genetics , Holoprosencephaly/genetics , Kruppel-Like Transcription Factors/genetics , Nuclear Proteins/genetics , Child , Chromosomes, Human, Pair 2/genetics , DNA Copy Number Variations , Female , Genetic Carrier Screening , Haploinsufficiency , Humans , Hypopituitarism/genetics , Infant , Magnetic Resonance Imaging , Microarray Analysis , Mutation , Pedigree , Phenotype , Zinc Finger Protein Gli2
5.
Clin Case Rep ; 6(5): 788-791, 2018 May.
Article in English | MEDLINE | ID: mdl-29744057

ABSTRACT

One of the confounders in noninvasive prenatal testing (NIPT) is the vanishing twin phenomenon. Prolonged contribution to the maternal Cell-free DNA (cfDNA) pool by cytotrophoblasts representing a demised, aneuploid cotwin may lead to a false-positive outcome for a normal, viable twin. We show that a vanishing trisomy-14 twin contributes to cfDNA for more than 2 weeks after demise.

6.
Clin Case Rep ; 3(6): 489-91, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26185654

ABSTRACT

Noninvasive prenatal testing (NIPT) and direct karyotyping of cytotrophoblast were normal for a male fetus, but cultured chorionic villus mesenchymal cells and umbilical cord fibroblasts showed nonmosaic trisomy 18. This observation provides direct evidence for the cytotrophoblastic origin of cell-free fetal DNA and yields a biological explanation for falsely reassuring NIPT results.

7.
Nat Genet ; 44(7): 793-6, 2012 May 18.
Article in English | MEDLINE | ID: mdl-22610116

ABSTRACT

Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Cardiomegaly/genetics , Genetic Diseases, X-Linked/genetics , Hypertrichosis/genetics , Mutation, Missense , Osteochondrodysplasias/genetics , Potassium Channels, Inwardly Rectifying/genetics , Receptors, Drug/genetics , Adult , Cell Line, Transformed , Child , Child, Preschool , Exome , Female , Genetic Predisposition to Disease , HEK293 Cells , Humans , Infant , Infant, Newborn , KATP Channels/genetics , Male , Protein Structure, Tertiary/genetics , Sulfonylurea Receptors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL