Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Microb Ecol ; 84(1): 182-197, 2022 Jul.
Article in English | MEDLINE | ID: mdl-34406445

ABSTRACT

Keystone species or ecological engineers are vital to the health of an ecosystem; however, often, their low abundance or biomass present challenges for their discovery, identification, visualization and selection. We report the development of fluorescent in situ hybridization of transcript-annealing molecular beacons (FISH-TAMB), a fixation-free protocol that is applicable to archaea and bacteria. The FISH-TAMB method differs from existing FISH methods by the absence of fixatives or surfactants in buffers, the fast hybridization time of as short as 15 min at target cells' growth temperature, and the omission of washing steps. Polyarginine cell-penetrating peptides are employed to deliver molecular beacons (MBs) across prokaryotic cell walls and membranes, fluorescently labeling cells when MBs hybridize to target mRNA sequences. Here, the detailed protocol of the preparation and application of FISH-TAMB is presented. To demonstrate FISH-TAMB's ability to label intracellular mRNA targets, differentiate transcriptional states, detect active and rare taxa, and keep cell viability, labeling experiments were performed that targeted the messenger RNA (mRNA) of methyl-coenzyme M reductase A (mcrA) expressed in (1) Escherichia coli containing a plasmid with a partial mcrA gene of the methanogen Methanosarcina barkeri (E. coli mcrA+); (2) M. barkeri; and (3) an anaerobic methanotrophic (ANME) enrichment from a deep continental borehole. Although FISH-TAMB was initially envisioned for mRNA of any functional gene of interest without a requirement of prior knowledge of 16S ribosomal RNA (rRNA)-based taxonomy, FISH-TAMB has the potential for multiplexing and going beyond mRNA and thus is a versatile addition to the molecular ecologist's toolkit, with potentially widespread application in the field of environmental microbiology.


Subject(s)
Methane , Microbiota , Archaea , DNA, Archaeal/genetics , Escherichia coli/genetics , In Situ Hybridization, Fluorescence/methods , Methane/metabolism , Oxidoreductases/genetics , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
2.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Article in English | MEDLINE | ID: mdl-27872277

ABSTRACT

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Subject(s)
Denitrification , Ecosystem , Methane/biosynthesis , Microbiota , Sulfur/metabolism , Autotrophic Processes , Carbon/metabolism , Nitrogen/metabolism , South Africa
3.
Article in English | MEDLINE | ID: mdl-30676291

ABSTRACT

Aliphatic and aromatic hydrocarbons are ubiquitous in the environment due to natural and anthropogenic processes. Under aerobic conditions hydrocarbons can be rapidly biodegraded but oxygenated environments often quickly become anaerobic when microbial respiration is coupled to contaminant oxidation. Most studies in literature usually focus on the initial microbial diversity of the hydrocarbon impacted environment and examine either aerobic or anaerobic conditions for enrichment. Hence, the aim of the present study was to enrich bacterial consortiums from two diesel impacted soil samples under both these conditions to assess the enrichment diversities and hydrocarbon degradation potentials. This would shed light upon how an environmental population shift would correlate to oxygen intrusion and depletion and still continue hydrocarbon degradation. Analysis of the 16S rRNA gene sequences showcases the different microbial populations that could emerge as the environmental factors change, resulting in different populations that are still capable of hydrocarbon degradation. Microbial diversity analysis also highlights the role of facultative anaerobic bacteria like Pseudomonas spp. and Citrobacter spp. in maintaining hydrocarbon degradation. This study shows that microorganisms capable of surviving under both oxic and anoxic (aerobic and anaerobic) conditions are the most crucial to the long term degradation of hydrocarbons in the environment.


Subject(s)
Bacteria, Anaerobic/growth & development , Gasoline/analysis , Hydrocarbons/analysis , Soil Microbiology , Soil Pollutants/analysis , Soil/chemistry , Aerobiosis , Anaerobiosis , Biodegradation, Environmental , Hydrocarbons/metabolism , RNA, Ribosomal, 16S/genetics , Soil Pollutants/metabolism
4.
Protein Expr Purif ; 151: 62-71, 2018 11.
Article in English | MEDLINE | ID: mdl-29894804

ABSTRACT

The development of therapeutic antibodies in their various forms has been a constant challenge since the development of the first monoclonal antibodies in 1975. This is especially true for the development of therapeutic single chain variable (scFv) fragments in Escherichia coli. In a previous study the selection of a tissue factor inhibiting single chain variable fragment (TFI-scFv) isolated from the Thomlinson I + J phage libraries was described. Although the initial findings were promising, additional characterization of the antibody fragment and subsequent application was hampered due low protein yield. This study reports on: i) the improved expression of a previously low yielding TFI-scFv in the cytoplasm of E. coli BL21 (DE3) through modifications to the expression systems in conjunction with codon optimization ii) evaluation of two commercial methods of protein recovery: in vitro refolding and the utilization of cold shock expression systems in conjunction with E. coli SHuffle. Results showed that TFI-scFv could be expressed at higher levels in the cytoplasm of E. coli than previously achieved in the periplasm. Both the in vitro refolding and cold shock strategies were capable of producing functional TFI-scFv with varying degrees of success. These procedures could be applied to improve the production of other problematic low yielding scFv isolated from phage display repositories in order to facilitate their characterization.


Subject(s)
Cold-Shock Response , Single-Chain Antibodies/biosynthesis , Cell Surface Display Techniques , Codon , Cytoplasm/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Inclusion Bodies/metabolism , Periplasm/metabolism , Protein Refolding , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Single-Chain Antibodies/genetics
5.
BMC Biotechnol ; 17(1): 51, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28606076

ABSTRACT

BACKGROUND: The discharge of poorly treated effluents into the environment has far reaching, consequential impacts on human and aquatic life forms. Thus, we evaluated the flocculating efficiency of our test bioflocculant and we report for the first time the ability of the biopolymeric flocculant produced by Arthrobacter humicola in the treatment of sewage wastewater. This strain was isolated from sediment soil sample at Sterkfontein dam in the Eastern Free State province of South Africa. RESULTS: Basic Local Alignment Search Tool (BLAST) analysis of the nucleotide sequence of the 16S rDNA revealed the bacteria to have 99% similarity to Arthrobacter humicola strain R1 and the sequence was deposited in the Gene bank as Arthrobacter humicola with accession number KC816574.1. Flocculating activity was enhanced with the aid of divalent cations, pH 12, at a dosage concentration of 0.8 mg/mL. The purified bioflocculant was heat stable and could retain more than 78% of its flocculating activity after heating at 100 °C for 25 min. Fourier Transform Infrared Spectroscopy analysis demonstrated the presence of hydroxyl and carboxyl moieties as the functional groups. The thermogravimetric analysis was used to monitor the pyrolysis profile of the purified bioflocculant and elemental composition revealed C: O: Na: P: K with 13.90: 41.96: 26.79: 16.61: 0.74 weight percentage respectively. The purified bioflocculant was able to remove chemical oxygen demand, biological oxygen demand, suspended solids, nitrate and turbidity from sewage waste water at efficiencies of 65.7%, 63.5%, 55.7%, 71.4% and 81.3% respectively. CONCLUSIONS: The results of this study indicate the possibility of using the bioflocculant produced by Arthrobacter humicola as a potential alternative to synthesized chemical flocculants in sewage waste water treatment and other industrial waste water.


Subject(s)
Arthrobacter/chemistry , Arthrobacter/metabolism , Sewage/microbiology , Soil Microbiology , Wastewater/microbiology , Water Pollutants, Chemical/metabolism , Water Purification/methods , Arthrobacter/classification , Arthrobacter/growth & development , Biodegradation, Environmental , Flocculation , Species Specificity , Water Pollutants, Chemical/isolation & purification
6.
World J Microbiol Biotechnol ; 33(5): 88, 2017 May.
Article in English | MEDLINE | ID: mdl-28390012

ABSTRACT

Most of the power generation globally is by coal-fired power plants resulting in large stockpiles of fly ash. The trace elements associated with the ash particles are subjected to the leaching effects of precipitation which may lead to the subsequent contamination of surface and groundwater systems. In this study, we successfully demonstrate an efficient and sustainable dual treatment remediation strategy for the removal of high levels of Cr6+ and SO42- introduced by fly ash leachate generated by a power station situation in Mpumalanga, South Africa. The treatment consisted of a primary fixed-bed bioreactor kept at a reduction potential for Cr6+ reduction. Metagenome sequencing clearly indicated a diverse bacterial community containing various bacteria, predominantly of the phylum Proteobacteria which includes numerous species known for their ability to detoxify metals such as Cr6+. This was followed by a secondary BaCO3/dispersed alkaline substrate column for SO42- removal. The combination of these two systems resulted in the removal of 99% Cr6+ and 90% SO42-. This is the first effective demonstration of an integrated system combining a biological and chemical strategy for the remediation of multi-contaminants present in fly ash leachate in South Africa.


Subject(s)
Chromium/chemistry , Coal Ash/chemistry , Proteobacteria/classification , Sulfates/chemistry , Biodegradation, Environmental , Bioreactors/microbiology , Chemical Precipitation , Metagenome , Proteobacteria/genetics , Proteobacteria/isolation & purification , Refuse Disposal , Sequence Analysis, DNA , South Africa , Water Pollutants, Chemical/chemistry
7.
Int J Syst Evol Microbiol ; 65(Pt 3): 760-765, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25479950

ABSTRACT

Two novel strains of thermophilic planctomycetes were recovered from terrestrial and subterranean habitats. Strain R1(T) was isolated from a hot spring (Kunashir Island, Russia) and strain SBP2(T) was isolated from a deep gold mine (South Africa). Both isolates grew in the temperature range 30-60 °C and pH range 5.0-8.0. Strain R1(T) grew optimally at 60 °C and pH 6.0-6.5; for SBP2(T) optimal conditions were at 52 °C and pH 7.5-8.0. Both strains were capable of anaerobic respiration with nitrate and nitrite as electron acceptors as well as of microaerobic growth. They also could grow by fermentation of mono-, di- and polysaccharides. Based on their phylogenetic position and phenotypic features we suggest that the new isolates represent two novel species belonging to a new genus in the order Planctomycetales, for which the names Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov. are proposed. The type strain of Thermogutta terrifontis, the type species of the genus, is R1(T) ( = DSM 26237(T) = VKM B-2805(T)), and the type strain of Thermogutta hypogea is SBP2(T) ( = JCM 19991(T) = VKM B-2782(T)).


Subject(s)
Bacteria/classification , Hot Springs/microbiology , Phylogeny , Bacteria/genetics , Bacteria/isolation & purification , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/chemistry , Mining , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Russia , Sequence Analysis, DNA , South Africa , Water Microbiology
8.
Biotechnol Bioeng ; 110(12): 3085-92, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23794404

ABSTRACT

Eleven flavoproteins from the old yellow enzyme family were found to catalyze the disproportionation ("dismutation") of conjugated enones. Incomplete conversions, which were attributed to enzyme inhibition by the co-product phenol could be circumvented via in situ co-product removal by scavenging the phenol using the polymeric adsorbent MP-carbonate. The optimized system allowed to reduce an alkene activated by ester groups in a "coupled-substrate" approach via nicotinamide-free hydrogen transfer with >90% conversion and complete stereoselectivity.


Subject(s)
Alkanes/metabolism , Coenzymes/metabolism , Dinitrocresols/metabolism , Flavoproteins/metabolism , Oxidoreductases/metabolism , Enzyme Inhibitors/metabolism , Niacinamide/metabolism , Oxidation-Reduction , Phenol/metabolism
9.
BMC Genomics ; 12: 577, 2011 Nov 24.
Article in English | MEDLINE | ID: mdl-22115438

ABSTRACT

BACKGROUND: Many strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus. RESULTS: The genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle. CONCLUSIONS: The genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.


Subject(s)
Genome, Bacterial , Thermus/genetics , Adaptation, Biological/genetics , Chromosomes, Bacterial , Comparative Genomic Hybridization , DNA, Bacterial/genetics , Gene Rearrangement , Gene Transfer, Horizontal , Molecular Sequence Annotation , Sequence Analysis, DNA , Synteny , Thermus/metabolism , Thermus thermophilus/genetics
10.
Int Microbiol ; 14(4): 187-99, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22569756

ABSTRACT

Conjugation and natural competence are two major mechanisms that explain the acquisition of foreign genes throughout bacterial evolution. In recent decades, several studies in model organisms have revealed in great detail the steps involved in such processes. The findings support the idea that the major basis of these mechanisms is essentially similar in all bacteria. However, recent work has pinpointed the existence of new, evolutionarily different processes underlying lateral gene transfer. In Thermus thermophilus HB27, at least 16 proteins are required for the activity of one of the most efficient natural competence systems known so far. Many of those proteins have no similarities to proteins involved in natural competence in other well-known models. This unusual competence system is conserved, in association with the chromosome, in all other Thermus spp. genomes so far available, it being functional even in strains from isolated environments, such as deep mines. Conjugation is also possible among Thermus spp. Homologues to proteins implicated in conjugation in model bacteria are encoded in the genome of a recently sequenced strain of Thermus thermophilus and shared by other members of the genus. Nevertheless, processive DNA transfer in the absence of a functional natural competence system in strains in which no conjugation homologous genes can be found hints at the existence of an additional and unconventional conjugation mechanism in these bacteria.


Subject(s)
Gene Transfer, Horizontal , Thermus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conjugation, Genetic , Conserved Sequence , DNA Transformation Competence
11.
ISME J ; 15(10): 2830-2842, 2021 10.
Article in English | MEDLINE | ID: mdl-33824425

ABSTRACT

Sulfate-reducing bacteria Candidatus Desulforudis audaxviator (CDA) were originally discovered in deep fracture fluids accessed via South African gold mines and have since been found in geographically widespread deep subsurface locations. In order to constrain models for subsurface microbial evolution, we compared CDA genomes from Africa, North America and Eurasia using single cell genomics. Unexpectedly, 126 partial single amplified genomes from the three continents, a complete genome from of an isolate from Eurasia, and metagenome-assembled genomes from Africa and Eurasia shared >99.2% average nucleotide identity, low frequency of SNP's, and near-perfectly conserved prophages and CRISPRs. Our analyses reject sample cross-contamination, recent natural dispersal, and unusually strong purifying selection as likely explanations for these unexpected results. We therefore conclude that the analyzed CDA populations underwent only minimal evolution since their physical separation, potentially as far back as the breakup of Pangea between 165 and 55 Ma ago. High-fidelity DNA replication and repair mechanisms are the most plausible explanation for the highly conserved genome of CDA. CDA presents a stark contrast to the current model organisms in microbial evolutionary studies, which often develop adaptive traits over far shorter periods of time.


Subject(s)
Metagenome , Peptococcaceae , Genomics , Mining , Peptococcaceae/genetics , Phylogeny
12.
Biochem Biophys Res Commun ; 393(3): 426-31, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20138824

ABSTRACT

Recent characterization of the chromate reductase (CrS) from the thermophile Thermus scotoductus SA-01 revealed this enzyme to be related to the Old Yellow Enzyme (OYE) family. Here, we report the structure of a thermostable OYE homolog in its holoform at 2.2A as well as its complex with p-hydroxybenzaldehyde (pHBA). The enzyme crystallized as octamers with the monomers showing a classical TIM barrel fold which upon dimerization yields the biologically active form of the protein. A sulfate ion is bound above the si-side of the non-covalently bound FMN cofactor in the oxidized solved structure but is displaced upon pHBA binding. The active-site architecture is highly conserved as with other members of this enzyme family. The pHBA in the CrS complex is positioned by hydrogen bonding to the two conserved catalytic-site histidines. The most prominent structural difference between CrS and other OYE homologs is the size of the "capping domain". Thermostabilization of the enzyme is achieved in part through increased proline content within loops and turns as well as increased intersubunit interactions through hydrogen bonding and complex salt bridge networks. CrS is able to reduce the C=C bonds of alpha,beta-unsaturated carbonyl compounds with a preference towards cyclic substrates however no activity was observed towards beta-substituted substrates. Mutational studies have confirmed the role of Tyr177 as the proposed proton donor although reduction could still occur at a reduced rate when this residue was mutated to phenylalanine.


Subject(s)
NADPH Dehydrogenase/chemistry , Thermus/enzymology , Catalytic Domain , Crystallography, X-Ray , Enzyme Stability , Hot Temperature , Protein Structure, Secondary
13.
J Mol Model ; 26(5): 112, 2020 May 03.
Article in English | MEDLINE | ID: mdl-32363443

ABSTRACT

One of the co-author's details (Leon du Preez-lategaan) was printed incorrectly in the above publication. The correct details are provided below.

14.
J Mol Model ; 26(4): 87, 2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32219568

ABSTRACT

The interaction of a single-chain variable fragment (scFv) directed against human tissue factor (TF) was predicted using an in silico approach with the aim to establish a most likely mechanism of inhibition. The structure of the TF inhibiting scFv (TFI-scFv) was predicted using homology modeling, and complementarity-determining regions (CDRs) were identified. The CDR was utilized to direct molecular docking between the homology model of TFI-scFv and the crystal structure of the extracellular domains of human tissue factor. The rigid-body docking model was refined by means of molecular dynamic (MD) simulations, and the most prevalent cluster was identified. MD simulations predicted improved interaction between TFI-scFv and TF and propose the formation of stable complex for duration of the 600-ns simulation. Analysis of the refined docking model suggests that the interactions between TFI-scFv would interfere with the allosterical activation of coagulation factor VII (FVII) by TF. This interaction would prevent the formation of the active TF:VIIa complex and in so doing inhibit the initiation phase of blood coagulation as observers during in vitro testing.


Subject(s)
Antibodies, Neutralizing/chemistry , Molecular Dynamics Simulation , Single-Chain Antibodies/chemistry , Thromboplastin/chemistry , Humans
15.
Biotechnol Lett ; 31(6): 845-9, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19229481

ABSTRACT

Dissimilatory reduction of vanadium(V) by Enterobacter cloacae EV-SA01, isolated from a gold mine at 1.6 km below surface, is shown to occur anaerobically as well as aerobically. Growth rates were unaffected by up to 2 mM V(2)O(5). Reduction of vanadium(V) was growth phase-dependent and resulted in cell deformities and precipitation of the vanadium in its lower oxidation states. The vanadate reductase activity was membrane-associated and coupled the oxidation of NADH to the reduction of vanadate.


Subject(s)
Enterobacter cloacae/metabolism , Soil Microbiology , Vanadium/metabolism , Aerobiosis , Anaerobiosis , Cell Membrane/enzymology , Enterobacter cloacae/cytology , Enterobacter cloacae/growth & development , Enterobacter cloacae/isolation & purification , NAD/metabolism , Oxidation-Reduction , South Africa
16.
Sci Rep ; 9(1): 14339, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31586093

ABSTRACT

The biorecovery of europium (Eu) from primary (mineral deposits) and secondary (mining wastes) resources is of interest due to its remarkable luminescence properties, important for modern technological applications. In this study, we explored the tolerance levels, reduction and intracellular bioaccumulation of Eu by a site-specific bacterium, Clostridium sp. 2611 isolated from Phalaborwa carbonatite complex. Clostridium sp. 2611 was able to grow in minimal medium containing 0.5 mM Eu3+. SEM-EDX analysis confirmed an association between Eu precipitates and the bacterium, while TEM-EDX analysis indicated intracellular accumulation of Eu. According to the HR-XPS analysis, the bacterium was able to reduce Eu3+ to Eu2+ under growth and non-growth conditions. Preliminary protein characterization seems to indicate that a cytoplasmic pyruvate oxidoreductase is responsible for Eu bioreduction. These findings suggest the bioreduction of Eu3+ by Clostridium sp. as a resistance mechanism, can be exploited for the biorecovery of this metal.


Subject(s)
Bioaccumulation , Clostridium/metabolism , Europium/metabolism , Soil Microbiology , Anaerobiosis , Clostridium/chemistry , Clostridium/isolation & purification , Europium/chemistry , Industrial Microbiology , Mining , Oxidation-Reduction , Soil/chemistry
17.
Front Microbiol ; 10: 81, 2019.
Article in English | MEDLINE | ID: mdl-30761115

ABSTRACT

Rare earth metals are widely used in the production of many modern technologies. However, there is concern that supply cannot meet the growing demand in the near future. The extraction from low-grade sources such as geothermal fluids could contribute to address the increasing demand for these compounds. Here we investigated the interaction and eventual bioaccumulation of europium (Eu) by a thermophilic bacterium, Thermus scotoductus SA-01. We demonstrated that this bacterial strain can survive in high levels (up to 1 mM) of Eu, which is hundred times higher than typical concentrations found in the environment. Furthermore, Eu seems to stimulate the growth of T. scotoductus SA-01 at low (0.01-0.1 mM) concentrations. We also found, using TEM-EDX analysis, that the bacterium can accumulate Eu both intracellularly and extracellularly. FT-IR results confirmed that carbonyl and carboxyl groups were involved in the biosorption of Eu. Infrared and HR-XPS analysis demonstrated that Eu can be biomineralized by T. scotoductus SA-01 as Eu2(CO3)3. This suggests that T. scotoductus SA-01 can potentially be used for the biorecovery of rare earth metals from geothermal fluids.

18.
Nat Commun ; 10(1): 5268, 2019 11 21.
Article in English | MEDLINE | ID: mdl-31754114

ABSTRACT

The nematode Halicephalobus mephisto was originally discovered inhabiting a deep terrestrial aquifer 1.3 km underground. H. mephisto can thrive under conditions of abiotic stress including heat and minimal oxygen, where it feeds on a community of both chemolithotrophic and heterotrophic prokaryotes in an unusual ecosystem isolated from the surface biosphere. Here we report the comprehensive genome and transcriptome of this organism, identifying a signature of adaptation: an expanded repertoire of 70 kilodalton heat-shock proteins (Hsp70) and avrRpt2 induced gene 1 (AIG1) proteins. The expanded Hsp70 genes are transcriptionally induced upon growth under heat stress, and we find that positive selection is detectable in several members of this family. We further show that AIG1 may have been acquired by horizontal gene transfer (HGT) from a rhizobial fungus. Over one-third of the genes of H. mephisto are novel, highlighting the divergence of this nematode from other sequenced organisms. This work sheds light on the genomic basis of heat tolerance in a complete subterrestrial eukaryotic genome.


Subject(s)
Adaptation, Physiological/genetics , Genome, Helminth/genetics , Heat-Shock Response , Nematoda/genetics , Animals , Ecosystem , Gene Expression Regulation , Gene Ontology , Gene Transfer, Horizontal , HSP70 Heat-Shock Proteins/genetics , Helminth Proteins/genetics , Nematoda/classification , Phylogeny , Soil/parasitology , Stress, Physiological , Transcriptome
19.
J Bacteriol ; 190(8): 3076-82, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18263719

ABSTRACT

Bacteria can reduce toxic and carcinogenic Cr(VI) to insoluble and less toxic Cr(III). Thermus scotoductus SA-01, a South African gold mine isolate, has been shown to be able to reduce a variety of metals, including Cr(VI). Here we report the purification to homogeneity and characterization of a novel chromate reductase. The oxidoreductase is a homodimeric protein, with a monomer molecular mass of approximately 36 kDa, containing a noncovalently bound flavin mononucleotide cofactor. The chromate reductase is optimally active at a pH of 6.3 and at 65 degrees C and requires Ca(2+) or Mg(2+) for activity. Enzyme activity was also dependent on NADH or NADPH, with a preference for NADPH, coupling the oxidation of approximately 2 and 1.5 mol NAD(P)H to the reduction of 1 mol Cr(VI) under aerobic and anaerobic conditions, respectively. The K(m) values for Cr(VI) reduction were 3.5 and 8.4 microM for utilizing NADH and NADPH as electron donors, respectively, with corresponding V(max) values of 6.2 and 16.0 micromol min(-1) mg(-1). The catalytic efficiency (k(cat)/K(m)) of chromate reduction was 1.14 x 10(6) M(-1) s(-1), which was >50-fold more efficient than that of the quinone reductases and >180-fold more efficient than that of the nitroreductases able to reduce Cr(VI). The chromate reductase was identified to be encoded by an open reading frame of 1,050 bp, encoding a single protein of 38 kDa under the regulation of an Escherichia coli sigma(70)-like promoter. Sequence analysis shows the chromate reductase to be related to the old yellow enzyme family, in particular the xenobiotic reductases involved in the oxidative stress response.


Subject(s)
Chromium/metabolism , NADPH Dehydrogenase/genetics , Oxidoreductases/genetics , Oxidoreductases/isolation & purification , Thermus/enzymology , Amino Acid Sequence , Bacteria , Cations, Divalent/pharmacology , Coenzymes/analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Dimerization , Edetic Acid/pharmacology , Enzyme Activators/pharmacology , Enzyme Inhibitors/pharmacology , Enzyme Stability , Flavin Mononucleotide/analysis , Flavin Mononucleotide/pharmacology , Hydrogen-Ion Concentration , Kinetics , Molecular Sequence Data , Molecular Weight , NAD/metabolism , NADP/metabolism , Oxidoreductases/chemistry , Sequence Alignment , Sequence Analysis, DNA , Spectrum Analysis , Temperature , Thermus/genetics
20.
FEMS Microbiol Lett ; 280(2): 210-8, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18218019

ABSTRACT

A membrane-associated chromate reductase from Thermus scotoductus SA-01 has been purified to apparent homogeneity and shown to couple the reduction of Cr(VI) to NAD(P)H oxidation, with a preference towards NADH. The chromate reductase is a homodimer with a monomeric molecular weight of 48 kDa and a noncovalently bound FAD coenzyme. The enzyme is optimally active at a pH of 6.5 and 65 degrees C with a K(m) of 55.5+/-4.2 microM and a V(max) of 2.3+/-0.1 micromol Cr(VI) min(-1) mg(-1) protein. The catalytic efficiency (k(cat)/K(m)) of the enzyme was found to be comparable to that found for quinone reductases but more efficient than the nitroreductases. N-terminal sequencing and subsequent screening of a genomic library of T. scotoductus revealed an ORF of 1386 bp, homologous (84%) to the dihydrolipoamide dehydrogenase gene of Thermus thermophilus HB8. These results extend the knowledge of chromate reductases mediating Cr(VI) reduction via noncovalently bound or free redox-active flavin groups and the activity of dihydrolipoamide dehydrogenases towards physiologically unrelated substrates.


Subject(s)
Chromium/metabolism , NADPH Dehydrogenase/genetics , Oxidoreductases/metabolism , Thermus/enzymology , Hydrogen-Ion Concentration , Membrane Proteins/metabolism , Thermus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL