Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459510

ABSTRACT

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Subject(s)
Biodiversity , Biological Evolution , Phylogeny , Seeds , Geology
2.
Ecol Lett ; 27(3): e14384, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426584

ABSTRACT

Although native species diversity is frequently reported to enhance invasion resistance, within-species diversity of native plants can also moderate invasions. While the positive diversity-invasion resistance relationship is often attributed to competition, indirect effects mediated through plant-soil feedbacks can also influence the relationship. We manipulated the genotypic diversity of an endemic species, Scirpus mariqueter, and evaluated the effects of abiotic versus biotic feedbacks on the performance of a global invader, Spartina alterniflora. We found that invader performance on live soils decreased non-additively with genotypic diversity of the native plant that trained the soils, but this reversed when soils were sterilized to eliminate feedbacks through soil biota. The influence of soil biota on the feedback was primarily associated with increased levels of microbial biomass and fungal diversity in soils trained by multiple-genotype populations. Our findings highlight the importance of plant-soil feedbacks mediating the positive relationship between genotypic diversity and invasion resistance.


Subject(s)
Plants , Soil , Feedback , Poaceae , Genotype , Soil Microbiology , Introduced Species
3.
Ecol Appl ; 34(1): e2811, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36708137

ABSTRACT

Biological invasions have become a worldwide problem, and measures to efficiently prevent and control invasions are still in development. Like many other parts of the world, China is undergoing a dramatic increase in plant invasions. Most of the currently 933 established (i.e., naturalized) plant species, of which 214 are categorized as invasive, have been introduced into China for cultivation. It is likely that many of those species are still being traded, particularly online, by plant nurseries. However, studies assessing whether naturalized and invasive species are currently being traded more or less than nonnaturalized aliens are rare. We extracted online-trade information for 13,718 cultivated alien plant taxa on 1688.com, the largest website for domestic B2B in China. We analyzed how the presence in online-nursery catalogs, the number of online nurseries that offerred the species for sale, and the product type (i.e., seeds, live plants and vegetative organs) differed among nonnaturalized, naturalized noninvasive, and invasive species. Compared to nonnaturalized taxa, naturalized noninvasive and invasive taxa were 3.7-5.2 times more likely to be available for purchase. Naturalized noninvasive and invasive taxa were more frequently offered as seeds by online nurseries, whereas nonnaturalized taxa were more frequently offered as live plants. Based on these findings, we propose that, to reduce the further spread of invasive and potentially invasive plants, implementation of plant-trade regulations and a monitoring system of the online horticultural supply chain will be essential.


Subject(s)
Introduced Species , Plants , Seeds , Commerce , China
4.
New Phytol ; 239(6): 2389-2403, 2023 09.
Article in English | MEDLINE | ID: mdl-37438886

ABSTRACT

Karyological characteristics are among the traits underpinning the invasion success of vascular plants. Using 11 049 species, we tested the effects of genome size and ploidy levels on plant naturalization (species forming self-sustaining populations where they are not native) and invasion (naturalized species spreading rapidly and having environmental impact). The probability that a species naturalized anywhere in the world decreased with increasing monoploid genome size (DNA content of a single chromosome set). Naturalized or invasive species with intermediate monoploid genomes were reported from many regions, but those with either small or large genomes occurred in fewer regions. By contrast, large holoploid genome sizes (DNA content of the unreplicated gametic nucleus) constrained naturalization but favoured invasion. We suggest that a small genome is an advantage during naturalization, being linked to traits favouring adaptation to local conditions, but for invasive spread, traits associated with a large holoploid genome, where the impact of polyploidy may act, facilitate long-distance dispersal and competition with other species.


Subject(s)
Ecosystem , Tracheophyta , Genome Size , Citizenship , Ploidies , Introduced Species , DNA
5.
New Phytol ; 237(4): 1432-1445, 2023 02.
Article in English | MEDLINE | ID: mdl-36375492

ABSTRACT

Despite the paramount role of plant diversity for ecosystem functioning, biogeochemical cycles, and human welfare, knowledge of its global distribution is still incomplete, hampering basic research and biodiversity conservation. Here, we used machine learning (random forests, extreme gradient boosting, and neural networks) and conventional statistical methods (generalized linear models and generalized additive models) to test environment-related hypotheses of broad-scale vascular plant diversity gradients and to model and predict species richness and phylogenetic richness worldwide. To this end, we used 830 regional plant inventories including c. 300 000 species and predictors of past and present environmental conditions. Machine learning showed a superior performance, explaining up to 80.9% of species richness and 83.3% of phylogenetic richness, illustrating the great potential of such techniques for disentangling complex and interacting associations between the environment and plant diversity. Current climate and environmental heterogeneity emerged as the primary drivers, while past environmental conditions left only small but detectable imprints on plant diversity. Finally, we combined predictions from multiple modeling techniques (ensemble predictions) to reveal global patterns and centers of plant diversity at multiple resolutions down to 7774 km2 . Our predictive maps provide accurate estimates of global plant diversity available at grain sizes relevant for conservation and macroecology.


Subject(s)
Biodiversity , Ecosystem , Humans , Phylogeny , Climate , Linear Models , Plants
6.
New Phytol ; 235(4): 1589-1598, 2022 08.
Article in English | MEDLINE | ID: mdl-35551668

ABSTRACT

It has been suggested that establishment of one alien invader might promote further invasions. Such a so-called invasional meltdown could be mediated by differences in soil-legacy effects between alien and native plants. Whether such legacy effects might depend on the diversity of the invaded community has not been explored to date. Here, we conducted a two-phase plant-soil feedback experiment. In a soil-conditioning phase, we grew five alien and five native species as invaders in 21 communities of one, two or four species. In the subsequent test phase, we grew five alien and five native species on the conditioned soils. We found that growth of these test species was negatively affected by soils conditioned by both a community and an invader, and particularly if the previous invader was a conspecific (i.e. negative plant-soil feedback). Alien test species suffered less from soil-legacy effects of previous allospecific alien invaders than from the legacy effects of previous native invaders. However, this effect decreased when the soil had been co-conditioned by a multispecies community. Our findings suggest that plant-soil feedback-mediated invasional meltdown may depend on community diversity and therefore provide some evidence that diverse communities could increase resistance against subsequent alien invasions.


Subject(s)
Plants , Soil , Feedback , Introduced Species
7.
Glob Chang Biol ; 28(11): 3674-3682, 2022 06.
Article in English | MEDLINE | ID: mdl-35152520

ABSTRACT

Artificial light at night (ALAN) has been and still is rapidly spreading and has become an important component of global change. Although numerous studies have tested its potential biological and ecological impacts on animals, very few studies have tested whether it affects alien and native plants differently. Furthermore, common plant species, and particularly common alien species, are often found to benefit more from additional resources than rare native and rare alien species. Whether this is also the case with regard to increasing light due to ALAN is still unknown. Here, we tested how ALAN affected the performance of common and rare alien and native plant species in Germany directly, and indirectly via flying insects. We grew five common alien, six rare alien, five common native, and four rare native plant species under four combinations of two ALAN (no ALAN vs. ALAN) and two insect-exclusion (no exclusion vs. exclusion) treatments, and compared their biomass production. We found that common plant species, irrespective of their origin, produced significantly more biomass than rare species and that this was particularly true under ALAN. Furthermore, alien species tended to show a slightly stronger positive response to ALAN than native species did (p = .079). Our study shows that common plant species benefited more from ALAN than rare ones. This might lead to competitive exclusion of rare species, which could have cascading impacts on other trophic levels and thus have important community-wide consequences when ALAN becomes more widespread. In addition, the slightly more positive response of alien species indicates that ALAN might increase the risk of alien plant invasions.


Subject(s)
Introduced Species , Light Pollution , Animals , Biomass , Insecta , Light , Plants
8.
Ann Bot ; 130(6): 917-926, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36227858

ABSTRACT

BACKGROUND AND AIMS: Some plant species suppress competitors through release of chemical compounds into the environment. As the production of allelochemicals may be costly, it would be beneficial if their production would only be induced when plants experience competition. We tested whether two plant species that frequently co-occur show evidence for induced allelopathy in response to intra- and interspecific competition. METHODS: We used the annual forb Crepidiastrum sonchifolium and the perennial forb Achyranthes bidentata, which are native to China and predominantly occur in ruderal communities, as focal species. We first grew the species without competition, with intraspecific competition and in competition with each other. We chemically analysed aqueous extracts made from these plants to test for evidence that the competition treatments affected the metabolomic profiles of the species. We then tested the effects of the aqueous extracts on seed germination and seedling growth of both plant species. KEY RESULTS: Metabolomic analysis revealed that competition treatments modified the chemical profiles of the two study species. The root lengths of A. bidentata and C. sonchifolium seedlings were reduced by the aqueous plant extracts. For seedling root length of A. bidentata, heterospecific allelopathy was more negative than conspecific allelopathy, but for germination of C. sonchifolium seeds, the reverse was true. Moreover, conspecific allelopathic effects on germination of A. bidentata seeds and on seedling root length of both species were most negative when the aqueous extracts were made from plants that had experienced competition. In the case of seedling root length of A. bidentata, this effect was most negative when the plants had experienced interspecific instead of intraspecific competition. CONCLUSIONS: We showed that plants change their metabolomic profiles in response to competition, and that this correlated with allelopathic inhibition of conspecific seed germination and seedling growth. We suggest that autoallelopathy for seed germination could function as a mechanism to avoid strong competition by keeping the seeds in a dormant state.


Subject(s)
Allelopathy , Asteraceae , Seedlings , Germination , Seeds , Plant Extracts/pharmacology
9.
Ecol Lett ; 24(2): 348-362, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33085152

ABSTRACT

Allelopathy (i.e. chemical interactions between plants) is known to affect individual performance, community structure and plant invasions. Yet, a quantitative synthesis is lacking. Here, we performed a meta-analysis of 384 studies that measured allelopathic effects of one species (allelopathy plant) on another species or itself (test plant). Overall, allelopathy reduced plant performance by 25%, but the variation in allelopathy was high. The type of method affected the allelopathic effect: compared to leachates, allelopathy was more negative when residues of allelopathy plants were applied, and less negative when soil conditioned by allelopathy plants was applied. The negative effects of allelopathy diminished with study duration, and increased with concentrations of leachates or residues. Although allelopathy was not significantly related to lifespan, life form or domestication of the interacting plants, it became more negative with increasing phylogenetic distance. Moreover, native plants suffered more from leachates of naturalised alien plants than from leachates of other native plants. Our synthesis reveals that allelopathy could contribute to success of alien plants. The negative relationship between phylogenetic distance and allelopathy indicates that allelopathy might contribute to coexistence of closely related species (i.e. convergence) or dominance of single species.


Subject(s)
Allelopathy , Plants , Phylogeny , Soil
10.
Ecol Lett ; 24(8): 1655-1667, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34031959

ABSTRACT

With globalisation facilitating the movement of plants and seeds beyond the native range, preventing potentially harmful introductions requires knowledge of what drives the successful establishment and spread of alien plants. Here, we examined global-scale relationships between naturalisation success (incidence and extent) and invasiveness, soil seed bank properties (type and densities) and key species traits (seed mass, seed dormancy and life form) for 2350 species of angiosperms. Naturalisation and invasiveness were strongly associated with the ability to form persistent (vs. transient) seed banks but relatively weakly with seed bank densities and other traits. Our findings suggest that seed bank persistence is a trait that better captures the ability to become naturalised and invasive compared to seed traits more widely available in trait databases. Knowledge of seed persistence can contribute to our ability to predict global naturalisation and invasiveness and to identify potentially invasive flowering plants before they are introduced.


Subject(s)
Magnoliopsida , Seed Bank , Plant Dormancy , Seeds , Soil
11.
New Phytol ; 229(5): 2998-3008, 2021 03.
Article in English | MEDLINE | ID: mdl-33078849

ABSTRACT

Human introductions of species beyond their natural ranges and their subsequent establishment are defining features of global environmental change. However, naturalized plants are not uniformly distributed across phylogenetic lineages, with some families contributing disproportionately more to the global alien species pool than others. Additionally, lineages differ in diversification rates, and high diversification rates have been associated with characteristics that increase species naturalization success. Here, we investigate the role of diversification rates in explaining the naturalization success of angiosperm plant families. We use five global data sets that include native and alien plant species distribution, horticultural use of plants, and a time-calibrated angiosperm phylogeny. Using phylogenetic generalized linear mixed models, we analysed the effect of diversification rate, different geographical range measures, and horticultural use on the naturalization success of plant families. We show that a family's naturalization success is positively associated with its evolutionary history, native range size, and economic use. Investigating interactive effects of these predictors shows that native range size and geographic distribution additionally affect naturalization success. High diversification rates and large ranges increase naturalization success, especially of temperate families. We suggest this may result from lower ecological specialization in temperate families with large ranges, compared with tropical families with smaller ranges.


Subject(s)
Ecosystem , Plants , Geography , Introduced Species , Phylogeny , Plants/genetics
12.
Mol Ecol ; 30(1): 222-236, 2021 01.
Article in English | MEDLINE | ID: mdl-33150604

ABSTRACT

Invasive species frequently differentiate phenotypically in novel environments within a few generations, often even with limited genetic variation. For the invasive plants Solidago canadensis and S. gigantea, we tested whether such differentiation might have occurred through heritable epigenetic changes in cytosine methylation. In a 2-year common-garden experiment, we grew plants from seeds collected along a latitudinal gradient in their non-native Central European range to test for trait differentiation and whether differentiation disappeared when seeds were treated with the demethylation agent zebularine. Microsatellite markers revealed no population structure along the latitudinal gradient in S. canadensis, but three genetic clusters in S. gigantea. Solidago canadensis showed latitudinal clines in flowering phenology and growth. In S. gigantea, the number of clonal offspring decreased with latitude. Although zebularine had a significant effect on early growth, probably through effects on cytosine methylation, latitudinal clines remained (or even got stronger) in plants raised from seeds treated with zebularine. Thus, our experiment provides no evidence that epigenetic mechanisms by selective cytosine methylation contribute to the observed phenotypic differentiation in invasive goldenrods in Central Europe.


Subject(s)
Solidago , Cytosine , Europe , Introduced Species , Methylation
13.
Nature ; 525(7567): 100-3, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26287466

ABSTRACT

All around the globe, humans have greatly altered the abiotic and biotic environment with ever-increasing speed. One defining feature of the Anthropocene epoch is the erosion of biogeographical barriers by human-mediated dispersal of species into new regions, where they can naturalize and cause ecological, economic and social damage. So far, no comprehensive analysis of the global accumulation and exchange of alien plant species between continents has been performed, primarily because of a lack of data. Here we bridge this knowledge gap by using a unique global database on the occurrences of naturalized alien plant species in 481 mainland and 362 island regions. In total, 13,168 plant species, corresponding to 3.9% of the extant global vascular flora, or approximately the size of the native European flora, have become naturalized somewhere on the globe as a result of human activity. North America has accumulated the largest number of naturalized species, whereas the Pacific Islands show the fastest increase in species numbers with respect to their land area. Continents in the Northern Hemisphere have been the major donors of naturalized alien species to all other continents. Our results quantify for the first time the extent of plant naturalizations worldwide, and illustrate the urgent need for globally integrated efforts to control, manage and understand the spread of alien species.


Subject(s)
Biodiversity , Geographic Mapping , Introduced Species/statistics & numerical data , Plants , Databases, Factual , North America , Pacific Islands , Phylogeography
14.
Proc Natl Acad Sci U S A ; 115(37): 9270-9275, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30158167

ABSTRACT

One of the best-known general patterns in island biogeography is the species-isolation relationship (SIR), a decrease in the number of native species with increasing island isolation that is linked to lower rates of natural dispersal and colonization on remote oceanic islands. However, during recent centuries, the anthropogenic introduction of alien species has increasingly gained importance and altered the composition and richness of island species pools. We analyzed a large dataset for alien and native plants, ants, reptiles, mammals, and birds on 257 (sub) tropical islands, and showed that, except for birds, the number of naturalized alien species increases with isolation for all taxa, a pattern that is opposite to the negative SIR of native species. We argue that the reversal of the SIR for alien species is driven by an increase in island invasibility due to reduced diversity and increased ecological naiveté of native biota on the more remote islands.


Subject(s)
Introduced Species , Islands , Models, Biological , Tropical Climate
15.
Proc Natl Acad Sci U S A ; 115(10): E2264-E2273, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29432147

ABSTRACT

Our ability to predict the identity of future invasive alien species is largely based upon knowledge of prior invasion history. Emerging alien species-those never encountered as aliens before-therefore pose a significant challenge to biosecurity interventions worldwide. Understanding their temporal trends, origins, and the drivers of their spread is pivotal to improving prevention and risk assessment tools. Here, we use a database of 45,984 first records of 16,019 established alien species to investigate the temporal dynamics of occurrences of emerging alien species worldwide. Even after many centuries of invasions the rate of emergence of new alien species is still high: One-quarter of first records during 2000-2005 were of species that had not been previously recorded anywhere as alien, though with large variation across taxa. Model results show that the high proportion of emerging alien species cannot be solely explained by increases in well-known drivers such as the amount of imported commodities from historically important source regions. Instead, these dynamics reflect the incorporation of new regions into the pool of potential alien species, likely as a consequence of expanding trade networks and environmental change. This process compensates for the depletion of the historically important source species pool through successive invasions. We estimate that 1-16% of all species on Earth, depending on the taxonomic group, qualify as potential alien species. These results suggest that there remains a high proportion of emerging alien species we have yet to encounter, with future impacts that are difficult to predict.


Subject(s)
Introduced Species/statistics & numerical data , Animals , Biodiversity , Ecosystem , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , Introduced Species/history , Models, Biological , Population Dynamics/history
16.
Proc Biol Sci ; 287(1939): 20202323, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33234079

ABSTRACT

Transitions from outcrossing to selfing have been a frequent evolutionary shift in plants and clearly play a role in species divergence. However, many questions remain about the initial mechanistic basis of reproductive isolation during the evolution of selfing. For instance, how important are pre-zygotic pre-pollination mechanisms (e.g. changes in phenology and pollinator visitation) in maintaining reproductive isolation between newly arisen selfing populations and their outcrossing ancestors? To test whether changes in phenology and pollinator visitation isolate selfing populations of Arabidopsis lyrata from outcrossing populations, we conducted a common garden experiment with plants from selfing and outcrossing populations as well as their between-population hybrids. Specifically, we asked whether there was isolation between outcrossing and selfing plants and their between-population hybrids through differences in (1) the timing or intensity of flowering; and/or (2) pollinator visitation. We found that phenology largely overlapped between plants from outcrossing and selfing populations. There were also no differences in pollinator preference related to mating system. Additionally, pollinators preferred to visit flowers on the same plant rather than exploring nearby plants, creating a large opportunity for self-fertilization. Overall, this suggests that pre-zygotic pre-pollination mechanisms do not strongly reproductively isolate plants from selfing and outcrossing populations of Arabidopsis lyrata.


Subject(s)
Arabidopsis , Pollination , Flowers , Reproduction , Seeds , Self-Fertilization
17.
Glob Chang Biol ; 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33000893

ABSTRACT

Biological invasions have steadily increased over recent centuries. However, we still lack a clear expectation about future trends in alien species numbers. In particular, we do not know whether alien species will continue to accumulate in regional floras and faunas, or whether the pace of accumulation will decrease due to the depletion of native source pools. Here, we apply a new model to simulate future numbers of alien species based on estimated sizes of source pools and dynamics of historical invasions, assuming a continuation of processes in the future as observed in the past (a business-as-usual scenario). We first validated performance of different model versions by conducting a back-casting approach, therefore fitting the model to alien species numbers until 1950 and validating predictions on trends from 1950 to 2005. In a second step, we selected the best performing model that provided the most robust predictions to project trajectories of alien species numbers until 2050. Altogether, this resulted in 3,790 stochastic simulation runs for 38 taxon-continent combinations. We provide the first quantitative projections of future trajectories of alien species numbers for seven major taxonomic groups in eight continents, accounting for variation in sampling intensity and uncertainty in projections. Overall, established alien species numbers per continent were predicted to increase from 2005 to 2050 by 36%. Particularly, strong increases were projected for Europe in absolute (+2,543 ± 237 alien species) and relative terms, followed by Temperate Asia (+1,597 ± 197), Northern America (1,484 ± 74) and Southern America (1,391 ± 258). Among individual taxonomic groups, especially strong increases were projected for invertebrates globally. Declining (but still positive) rates were projected only for Australasia. Our projections provide a first baseline for the assessment of future developments of biological invasions, which will help to inform policies to contain the spread of alien species.

18.
Glob Chang Biol ; 26(9): 4880-4893, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32663906

ABSTRACT

Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio-economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid-21st century. Based on responses from 36 experts in biological invasions, moderate (20%-30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions-transport, climate change and socio-economic change-were predicted to significantly affect future impacts of alien species on biodiversity even under a best-case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best-case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post-2020 Framework of the Convention on Biological Diversity.


Subject(s)
Biodiversity , Introduced Species , Climate Change , Ecosystem , Forecasting , Humans
19.
Glob Ecol Biogeogr ; 29(6): 978-991, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34938151

ABSTRACT

BACKGROUND AND AIMS: Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS: The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE: The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.

20.
Glob Ecol Biogeogr ; 29(2): 281-294, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32063745

ABSTRACT

AIM: Alien plant species can cause severe ecological and economic problems, and therefore attract a lot of research interest in biogeography and related fields. To identify potential future invasive species, we need to better understand the mechanisms underlying the abundances of invasive tree species in their new ranges, and whether these mechanisms differ between their native and alien ranges. Here, we test two hypotheses: that greater relative abundance is promoted by (a) functional difference from locally co-occurring trees, and (b) higher values than locally co-occurring trees for traits linked to competitive ability. LOCATION: Global. TIME PERIOD: Recent. MAJOR TAXA STUDIED: Trees. METHODS: We combined three global plant databases: sPlot vegetation-plot database, TRY plant trait database and Global Naturalized Alien Flora (GloNAF) database. We used a hierarchical Bayesian linear regression model to assess the factors associated with variation in local abundance, and how these relationships vary between native and alien ranges and depend on species' traits. RESULTS: In both ranges, species reach highest abundance if they are functionally similar to co-occurring species, yet are taller and have higher seed mass and wood density than co-occurring species. MAIN CONCLUSIONS: Our results suggest that light limitation leads to strong environmental and biotic filtering, and that it is advantageous to be taller and have denser wood. The striking similarities in abundance between native and alien ranges imply that information from tree species' native ranges can be used to predict in which habitats introduced species may become dominant.

SELECTION OF CITATIONS
SEARCH DETAIL