Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Exp Astron (Dordr) ; 51(3): 1385-1416, 2021.
Article in English | MEDLINE | ID: mdl-34720415

ABSTRACT

Black holes are unique among astrophysical sources: they are the simplest macroscopic objects in the Universe, and they are extraordinary in terms of their ability to convert energy into electromagnetic and gravitational radiation. Our capacity to probe their nature is limited by the sensitivity of our detectors. The LIGO/Virgo interferometers are the gravitational-wave equivalent of Galileo's telescope. The first few detections represent the beginning of a long journey of exploration. At the current pace of technological progress, it is reasonable to expect that the gravitational-wave detectors available in the 2035-2050s will be formidable tools to explore these fascinating objects in the cosmos, and space-based detectors with peak sensitivities in the mHz band represent one class of such tools. These detectors have a staggering discovery potential, and they will address fundamental open questions in physics and astronomy. Are astrophysical black holes adequately described by general relativity? Do we have empirical evidence for event horizons? Can black holes provide a glimpse into quantum gravity, or reveal a classical breakdown of Einstein's gravity? How and when did black holes form, and how do they grow? Are there new long-range interactions or fields in our Universe, potentially related to dark matter and dark energy or a more fundamental description of gravitation? Precision tests of black hole spacetimes with mHz-band gravitational-wave detectors will probe general relativity and fundamental physics in previously inaccessible regimes, and allow us to address some of these fundamental issues in our current understanding of nature.

2.
Phys Rev Lett ; 125(18): 181101, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33196223

ABSTRACT

The inspiral phasing of binary black holes at intermediate mass ratios (m_{2}/m_{1}∼10^{-3}) is important for gravitational wave observations, but not accessible to standard modeling techniques: The accuracy of the small mass-ratio (SMR) expansion is unknown at intermediate mass ratios, whereas numerical relativity simulations cannot reach this regime. This article assesses the accuracy of the SMR expansion by extracting the first three terms of the SMR expansion from numerical relativity data for nonspinning, quasicircular binaries. We recover the leading term predicted by SMR theory and obtain a robust prediction of the next-to-leading term. The influence of higher-order terms is bounded to be small, indicating that the SMR series truncated at next-to-leading order is quite accurate at intermediate mass ratios and even at nearly comparable mass binaries. We estimate the range of applicability for SMR and post-Newtonian series for nonspinning, quasicircular inspirals.

3.
Phys Rev Lett ; 118(1): 011101, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-28106405

ABSTRACT

The linear in mass ratio correction to the periapsis advance of equatorial nearly circular orbits around a spinning black hole is calculated for the first time and to a very high precision, providing a key benchmark for different approaches modeling spinning binaries. The high precision of the calculation is leveraged to discriminate between two recent incompatible derivations of the 4 post-Newtonian equations of motion. Finally, the limit of the periapsis advance near the innermost stable orbit (ISCO) allows the determination of the ISCO shift, validating previous calculations using the first law of binary mechanics. Calculation of the ISCO shift is further extended into the near-extremal regime (with spins up to 1-a=10^{-20}), revealing new unexpected phenomenology. In particular, we find that the shift of the ISCO does not have a well-defined extremal limit but instead continues to oscillate.

4.
Phys Rev Lett ; 118(14): 141102, 2017 Apr 07.
Article in English | MEDLINE | ID: mdl-28430496

ABSTRACT

We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

SELECTION OF CITATIONS
SEARCH DETAIL