Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Arch Toxicol ; 95(10): 3285-3302, 2021 10.
Article in English | MEDLINE | ID: mdl-34480604

ABSTRACT

Tagging of endogenous stress response genes can provide valuable in vitro models for chemical safety assessment. Here, we present the generation and application of a fluorescent human induced pluripotent stem cell (hiPSC) reporter line for Heme oxygenase-1 (HMOX1), which is considered a sensitive and reliable biomarker for the oxidative stress response. CRISPR/Cas9 technology was used to insert an enhanced green fluorescent protein (eGFP) at the C-terminal end of the endogenous HMOX1 gene. Individual clones were selected and extensively characterized to confirm precise editing and retained stem cell properties. Bardoxolone-methyl (CDDO-Me) induced oxidative stress caused similarly increased expression of both the wild-type and eGFP-tagged HMOX1 at the mRNA and protein level. Fluorescently tagged hiPSC-derived proximal tubule-like, hepatocyte-like, cardiomyocyte-like and neuron-like progenies were treated with CDDO-Me (5.62-1000 nM) or diethyl maleate (5.62-1000 µM) for 24 h and 72 h. Multi-lineage oxidative stress responses were assessed through transcriptomics analysis, and HMOX1-eGFP reporter expression was carefully monitored using live-cell confocal imaging. We found that eGFP intensity increased in a dose-dependent manner with dynamics varying amongst lineages and stressors. Point of departure modelling further captured the specific lineage sensitivities towards oxidative stress. We anticipate that the newly developed HMOX1 hiPSC reporter will become a valuable tool in understanding and quantifying critical target organ cell-specific oxidative stress responses induced by (newly developed) chemical entities.


Subject(s)
Heme Oxygenase-1/genetics , Induced Pluripotent Stem Cells/cytology , Oxidative Stress/drug effects , CRISPR-Cas Systems/genetics , Cell Differentiation , Cells, Cultured , Dose-Response Relationship, Drug , Green Fluorescent Proteins/genetics , Humans , Male , Maleates/administration & dosage , Maleates/toxicity , Middle Aged , Oleanolic Acid/administration & dosage , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/toxicity , RNA, Messenger/genetics , Time Factors
2.
Am J Physiol Cell Physiol ; 315(4): C598-C607, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30044660

ABSTRACT

Adaptation of the smooth muscle cell (SMC) phenotype is essential for homeostasis and is often involved in pathologies of visceral organs (e.g., uterus, bladder, gastrointestinal tract). In vitro studies of the behavior of visceral SMCs under (patho)-physiological conditions are hampered by a spontaneous, uncontrolled phenotypic modulation of visceral SMCs under regular tissue culture conditions. We aimed to develop a new visceral SMC culture model that allows controlled phenotypic modulation. Human uterine SMCs [ULTR and telomerase-immortalized human myometrial cells (hTERT-HM)] were grown to confluency and kept for up to 6 days on regular tissue culture surfaces or basement membrane (BM) matrix-coated surfaces in the presence of 0-10% serum. mRNA and protein expression and localization of SMC-specific phenotype markers and their transcriptional regulators were investigated by quantitative PCR, Western blotting, and immunofluorescence. Maintaining visceral SMCs confluent for 6 days increased α-smooth muscle actin (1.9-fold) and smooth muscle protein 22-α (3.1-fold), whereas smooth muscle myosin heavy chain was only slightly upregulated (1.3-fold). Culturing on a BM matrix-coated surface further increased these proteins and also markedly promoted mRNA expression of γ-smooth muscle actin (15.0-fold), smoothelin (3.5-fold), h-caldesmon (5.2-fold), serum response factor (7.6-fold), and myocardin (8.1-fold). Whereas additional serum deprivation only minimally affected contractile markers, platelet-derived growth factor-BB and transforming growth factor ß1 consistently reduced versus increased their expression. In conclusion, we present a simple and reproducible visceral SMC culture system that allows controlled phenotypic modulation toward both the synthetic and the contractile phenotype. This may greatly facilitate the identification of factors that drive visceral SMC phenotypic changes in health and disease.


Subject(s)
Cell Culture Techniques , Cell Differentiation/genetics , Muscle Contraction/genetics , Muscle, Smooth, Vascular/metabolism , Female , Gene Expression Regulation , Humans , Microfilament Proteins/genetics , Muscle Proteins/genetics , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/metabolism , Myometrium/cytology , Myometrium/metabolism , Nuclear Proteins/genetics , Phenotype , Platelet-Derived Growth Factor/genetics , RNA, Messenger/genetics , Telomerase/genetics , Trans-Activators/genetics
3.
iScience ; 26(3): 106094, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36895646

ABSTRACT

Animal testing is the current standard for drug and chemicals safety assessment, but hazards translation to human is uncertain. Human in vitro models can address the species translation but might not replicate in vivo complexity. Herein, we propose a network-based method addressing these translational multiscale problems that derives in vivo liver injury biomarkers applicable to in vitro human early safety screening. We applied weighted correlation network analysis (WGCNA) to a large rat liver transcriptomic dataset to obtain co-regulated gene clusters (modules). We identified modules statistically associated with liver pathologies, including a module enriched for ATF4-regulated genes as associated with the occurrence of hepatocellular single-cell necrosis, and as preserved in human liver in vitro models. Within the module, we identified TRIB3 and MTHFD2 as a novel candidate stress biomarkers, and developed and used BAC-eGFPHepG2 reporters in a compound screening, identifying compounds showing ATF4-dependent stress response and potential early safety signals.

4.
Adv Healthc Mater ; 10(11): e2001903, 2021 06.
Article in English | MEDLINE | ID: mdl-33929772

ABSTRACT

A major challenge in the use of HepG2 cell culture models for drug toxicity screening is their lack of maturity in 2D culture. 3D culture in Matrigel promotes the formation of spheroids that express liver-relevant markers, yet they still lack various primary hepatocyte functions. Therefore, alternative matrices where chemical composition and materials properties are controlled to steer maturation of HepG2 spheroids remain desired. Herein, a modular approach is taken based on a fully synthetic and minimalistic supramolecular matrix based on squaramide synthons outfitted with a cell-adhesive peptide, RGD for 3D HepG2 spheroid culture. Co-assemblies of RGD-functionalized squaramide-based and native monomers resulted in soft and self-recovering supramolecular hydrogels with a tunable RGD concentration. HepG2 spheroids are self-assembled and grown (≈150 µm) within the supramolecular hydrogels with high cell viability and differentiation over 21 days of culture. Importantly, significantly higher mRNA and protein expression levels of phase I and II metabolic enzymes, drug transporters, and liver markers are found for the squaramide hydrogels in comparison to Matrigel. Overall, the fully synthetic squaramide hydrogels are proven to be synthetically accessible and effective for HepG2 differentiation showcasing the potential of this supramolecular matrix to rival and replace naturally-derived materials classically used in high-throughput toxicity screening.


Subject(s)
Cell Culture Techniques , Spheroids, Cellular , Cell Differentiation , Hep G2 Cells , Humans , Hydrogels , Quinine/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL