Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Neurooncol ; 169(1): 95-104, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38896357

ABSTRACT

PURPOSE: Diffuse low-grade gliomas (dLGG) often have a frontal location, which may negatively affect patients' executive functions (EF). Being diagnosed with dLGG and having to undergo intensive treatment can be emotionally stressful. The ability to cope with this stress in an adaptive, active and flexible way may be hampered by impaired EF. Consequently, patients may suffer from increased mental distress. The aim of the present study was to explore profiles of EF, coping and mental distress and identify characteristics of each profile. METHODS: 151 patients with dLGG were included. Latent profile analysis (LPA) was used to explore profiles. Additional demographical, tumor and radiological characteristics were included. RESULTS: Four clusters were found: 1) overall good functioning (25% of patients); 2) poor executive functioning, good psychosocial functioning (32%); 3) good executive functioning, poor psychosocial functioning (18%) and; 4) overall poor functioning (25%). Characteristics of the different clusters were lower educational level and more (micro)vascular brain damage (cluster 2), a younger age (cluster 3), and a larger tumor volume (cluster 4). EF was not a distinctive factor for coping, nor was it for mental distress. Maladaptive coping, however, did distinguish clusters with higher mental distress (cluster 3 and 4) from clusters with lower levels of mental distress (cluster 1 and 2). CONCLUSION: Four distinctive clusters with different levels of functioning and characteristics were identified. EF impairments did not hinder the use of active coping strategies. Moreover, maladaptive coping, but not EF impairment, was related to increased mental distress in patients with dLGG.


Subject(s)
Adaptation, Psychological , Brain Neoplasms , Executive Function , Glioma , Psychological Distress , Humans , Executive Function/physiology , Glioma/psychology , Glioma/pathology , Male , Female , Brain Neoplasms/psychology , Brain Neoplasms/pathology , Adaptation, Psychological/physiology , Adult , Middle Aged , Resilience, Psychological , Aged , Stress, Psychological/psychology , Neoplasm Grading , Young Adult , Neuropsychological Tests
2.
Cancers (Basel) ; 16(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473254

ABSTRACT

Proton therapy is a promising modality for craniospinal irradiation (CSI), offering dosimetric advantages over conventional treatments. While significant attention has been paid to spine fields, for the brain fields, only dose reduction to the lens of the eye has been reported. Hence, the objective of this study is to assess the potential gains and feasibility of adopting different treatment planning techniques for the entire brain within the CSI target. To this end, eight previously treated CSI patients underwent retrospective replanning using various techniques: (1) intensity modulated proton therapy (IMPT) optimization, (2) the modification/addition of field directions, and (3) the pre-optimization removal of superficially placed spots. The target coverage robustness was evaluated and dose comparisons for lenses, cochleae, and scalp were conducted, considering potential biological dose increases. The target coverage robustness was maintained across all plans, with minor reductions when superficial spot removal was utilized. Single- and multifield optimization showed comparable target coverage robustness and organ-at-risk sparing. A significant scalp sparing was achieved in adults but only limited in pediatric cases. Superficial spot removal contributed to scalp V30 Gy reduction at the expense of lower coverage robustness in specific cases. Lens sparing benefits from multiple field directions, while cochlear sparing remains impractical. Based on the results, all investigated plan types are deemed clinically adoptable.

3.
Neuro Oncol ; 26(3): 528-537, 2024 03 04.
Article in English | MEDLINE | ID: mdl-37904541

ABSTRACT

BACKGROUND: Patients with low-grade gliomas (LGG) treated with surgery, generally function well and have a favorable prognosis. However, LGG can affect neurocognitive functioning. To date, little is known about social cognition (SC) in these patients, although impaired SC is related to social-behavioral problems and poor societal participation. Frontal brain areas are important for SC and LGG frequently have a frontal location. Therefore, the aim of the present study was to investigate whether emotion recognition, a key component of SC, was impaired, and related to general cognition, tumor location, laterality, tumor volume, and histopathological characteristics in patients with LGG, postsurgery, and before start of adjuvant therapy. METHODS: A total of 121 patients with LGG were matched with 169 healthy controls (HC). Tumor location [including (frontal) subregions; insula, anterior cingulate cortex, lateral prefrontal cortex (LPFC), orbitofrontal-ventromedial PFC] and tumor volume were determined on MRI scans. Emotion recognition was measured with the Ekman 60 faces test of the Facial Expressions of Emotion-Stimuli and Tests (FEEST). RESULTS: Patients with LGG performed significantly lower on the FEEST than HC, with 33.1% showing impairment compared to norm data. Emotion recognition was not significantly correlated to frontal tumor location, laterality, and histopathological characteristics, and significantly but weakly with general cognition and tumor volume. CONCLUSIONS: Emotion recognition is impaired in patients with LGG but not (strongly) related to specific tumor characteristics or general cognition. Hence, measuring SC with individual neuropsychological assessment of these patients is crucial, irrespective of tumor characteristics, to inform clinicians about possible impairments, and consequently offer appropriate care.


Subject(s)
Cognitive Dysfunction , Glioma , Humans , Emotions , Cognition , Recognition, Psychology , Neuropsychological Tests , Facial Expression
4.
PLoS One ; 18(5): e0275077, 2023.
Article in English | MEDLINE | ID: mdl-37134064

ABSTRACT

BACKGROUND: Radiotherapy (RT) and chemotherapy are components of standard multi-modality treatment of high grade gliomas (HGG) aimed at achieving local tumor control. Treatment is neurotoxic and RT plays an important role in this, inducing damage even distant to the RT target volume. PURPOSE: This retrospective longitudinal study evaluated the effect of treatment on white matter and gray matter volume in the tumor-free hemisphere of HGG patients using voxel based morphometry (VBM). METHOD: 3D T1-weighted MR images of 12 HGG patients at multiple timepoints during standard treatment were analyzed using VBM. Segmentation of white matter and gray matter of the tumor-free hemisphere was performed. Multiple general linear models were used to asses white matter and gray matter volumetric differences between time points. A mean RT dose map was created and compared to the VBM results. RESULTS: Diffuse loss of white matter volume, mainly throughout the frontal and parietal lobe, was found, grossly overlapping regions that received the highest RT dose. Significant loss of white matter was first noticed after three cycles of chemotherapy and persisted after the completion of standard treatment. No significant loss of white matter volume was observed between pre-RT and the first post-RT follow-up timepoint, indicating a delayed effect. CONCLUSION: This study demonstrated diffuse and early-delayed decreases in white matter volume of the tumor-free hemisphere in HGG patients after standard treatment. White matter volume changes occurred mainly throughout the frontal and parietal lobe and grossly overlapped with areas that received the highest RT dose.


Subject(s)
Glioma , White Matter , Humans , Longitudinal Studies , White Matter/diagnostic imaging , White Matter/pathology , Retrospective Studies , Magnetic Resonance Imaging/methods , Gray Matter/diagnostic imaging , Gray Matter/pathology , Glioma/diagnostic imaging , Glioma/radiotherapy , Brain/diagnostic imaging , Brain/pathology
5.
Res Diagn Interv Imaging ; 7: 100033, 2023 Sep.
Article in English | MEDLINE | ID: mdl-39077151

ABSTRACT

Background and purpose: Cerebral microbleeds (CMBs) and fluid-attenuated-inversion recovery (FLAIR) hyperintensities on brain MRI scans after radiotherapy (RT) are considered markers for microvascular damage and related cognitive changes. However, the spatial distribution using existing scoring systems as well as colocation of these imaging biomarkers remain unclear, hampering clinical interpretation. This study aims to elucidate the distribution and colocation of these markers in patients with lower grade glioma (LGG). Materials and methods: CMBs were spatially classified on retrospective 1.5 T susceptibility weighted MRI scans according to the existing Microbleed Anatomical Rating Scale (MARS) and were additionally scored for being located in hippocampus, amygdala, cortex, white matter (WM), grey matter (GM), WM/GM junction and for their spatial relation to FLAIR hyperintensities. Scoring was performed for whole, ipsilateral and contralateral cerebrum (with respect to tumour bulk). Results: Fifty-one scans were included of which 28 had at least one CMB. The majority of CMBs were localized in the lobar area and in deep and periventricular white matter (DPWM) - generally in WM. Only few CMBs were found in GM. In scans obtained up to 7 years after RT completion the majority of CMBs were not colocalized with FLAIR hyperintensities. Conclusion: CMBs and FLAIR hyperintensities appear to be separate imaging biomarkers for radiation therapy induced microvascular damage, as they are not colocalized in patients with LGG, especially not early on after completion of RT.

6.
Radiother Oncol ; 170: 27-36, 2022 05.
Article in English | MEDLINE | ID: mdl-35257849

ABSTRACT

As survival improves in childhood cancer, prevention of late treatment-related toxicity in survivors becomes increasingly relevant. Radiotherapy is an important contributor to late toxicity. Therefore, minimizing radiation exposure to normal tissues is an important step towards improving the long-term therapeutic window of childhood cancer treatment. Since children are growing and developing, they are particularly vulnerable to radiation exposure. This makes the 'as low as reasonably achievable (ALARA)' principle even more important. In order to guide and achieve clinically meaningful dose reductions through advanced and emerging radiation techniques, it is important to investigate age-dependent relationships between radiation exposure to healthy tissues and late radiation-induced toxicity. In this review, we provide an overview of literature on the association between radiotherapy dose and late toxicity after abdominal and pelvic irradiation in childhood cancer. With this information, we aim to aid in decision-making regarding radiotherapy for childhood cancer.


Subject(s)
Neoplasms , Radiation Injuries , Abdomen , Child , Humans , Neoplasms/radiotherapy , Pelvis , Radiation Injuries/therapy , Radiotherapy/adverse effects , Radiotherapy/methods , Survivors
7.
Clin Transl Radiat Oncol ; 33: 99-105, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35198742

ABSTRACT

Aim: To investigate the clinical relevance of the radiotherapy (RT) dose bath in patients treated for lower grade glioma (LGG). Methods: Patients (n = 17) treated with RT for LGG were assessed with neurocognitive function (NCF) tests and structural Magnetic Resonance Imaging (MRI) and categorized in subgroups based on tumour lateralisation. RT dose, volumetric results and cerebral microbleed (CMB) number were extracted for contralateral cerebrum, contralateral hippocampus, and cerebellum. The RT clinical target volume (CTV) was included in the analysis as a surrogate for focal tumour and other treatment effects. The relationships between RT dose, CTV, NCF and radiological outcome were analysed per subgroup. Results: The subgroup with left-sided tumours (n = 10) performed significantly lower on verbal tests. The RT dose to the right cerebrum, as well as CTV, were related to poorer performance on tests for processing speed, attention, and visuospatial abilities, and more CMB.In the subgroup with right-sided tumours (n = 7), RT dose in the left cerebrum was related to lower verbal memory performance, (immediate and delayed recall, r = -0.821, p = 0.023 and r = -0.937, p = 0.002, respectively), and RT dose to the left hippocampus was related to hippocampal volume (r = -0.857, p = 0.014), without correlation between CTV and NCF. Conclusion: By using a novel approach, we were able to investigate the clinical relevance of the RT dose bath in patients with LGG more specifically. We used combined MRI-derived and NCF outcome measures to assess radiation-induced brain damage, and observed potential RT effects on the left-sided brain resulting in lower verbal memory performance and hippocampus volume.

8.
Radiother Oncol ; 168: 241-249, 2022 03.
Article in English | MEDLINE | ID: mdl-35093408

ABSTRACT

PURPOSE: Treatment-related toxicity after irradiation of brain tumours has been underreported in the literature. Furthermore, there is considerable heterogeneity on how and when toxicity is evaluated. The aim of this European Particle Network (EPTN) collaborative project is to develop recommendations for uniform follow-up and toxicity scoring of adult brain tumour patients treated with radiotherapy. METHODS: A Delphi method-based consensus was reached among 24 international radiation-oncology experts in the field of neuro-oncology concerning the toxicity endpoints, evaluation methods and time points. RESULTS: In this paper, we present a basic framework for consistent toxicity scoring and follow-up, using multiple levels of recommendation. Level I includes all recommendations that are considered minimum of care, whereas level II and III are optional evaluations in the advanced clinical or research setting, respectively. Per outcome domain, the clinical endpoints and evaluation methods per level are listed. Where relevant, the organ at risk threshold doses for recommended referral to specific organ specialists are defined. CONCLUSION: These consensus-based recommendations for follow-up will enable the collection of uniform toxicity data of brain tumour patients treated with radiotherapy. With adoptation of this standard, collaboration will be facilitated and we can further propel the research field of radiation-induced toxicities relevant for these patients. An online tool to implement this guideline in clinical practice is provided at www.cancerdata.org.


Subject(s)
Proton Therapy , Skull Base Neoplasms , Adult , Brain , Consensus , Follow-Up Studies , Humans , Proton Therapy/adverse effects , Protons , Skull Base Neoplasms/radiotherapy
9.
Cancer Med ; 10(23): 8395-8404, 2021 12.
Article in English | MEDLINE | ID: mdl-34741440

ABSTRACT

BACKGROUND: Novel treatments make long-term survival possible for subsets of patients with melanoma brain metastases. Brain magnetic resonance imaging (MRI) may aid in early detection of brain metastases and inform treatment decisions. This study aimed to determine the impact of screening MRI scans in patients with metastatic melanoma and follow-up MRI scans in patients with melanoma brain metastases. METHODS: This retrospective cohort study included patients diagnosed with metastatic melanoma or melanoma brain metastases between June 2015 and January 2018. The impact of screening MRI scans was evaluated in the first 2 years after metastatic melanoma diagnosis. The impact of follow-up MRI scans was examined in the first year after brain metastases diagnosis. The number of MRI scans, scan indications, scan outcomes, and changes in treatment strategy were analyzed. RESULTS: In total, 116 patients had no brain metastases at the time of the metastatic melanoma diagnosis. Twenty-eight of these patients (24%) were subsequently diagnosed with brain metastases. Screening MRI scans detected the brain metastases in 11/28 patients (39%), of which 8 were asymptomatic at diagnosis. In the 96 patients with melanoma brain metastases, treatment strategy changed after 75/168 follow-up MRI scans (45%). In patients treated with immune checkpoint inhibitors, the number of treatment changes after follow-up MRI scans was lower when patients had been treated longer. CONCLUSION(S): Screening MRI scans aid in early detection of melanoma brain metastases, and follow-up MRI scans inform treatment strategy. In patients with brain metastases responding to immune checkpoint inhibitors, treatment changes were less frequently observed after follow-up MRI scans. These results can inform the development of brain imaging protocols for patients with immune checkpoint inhibitor sensitive tumors.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Magnetic Resonance Imaging/methods , Melanoma/diagnostic imaging , Melanoma/secondary , Skin Neoplasms/pathology , Aged , Female , Humans , Male , Mass Screening , Netherlands , Retrospective Studies
10.
Radiother Oncol ; 154: 283-290, 2021 01.
Article in English | MEDLINE | ID: mdl-33197495

ABSTRACT

Proton therapy offers an attractive alternative to conventional photon-based radiotherapy in low grade glioma patients, delivering radiotherapy with equivalent efficacy to the tumour with less radiation exposure to the brain. In the Netherlands, patients with favourable prognosis based on tumour and patient characteristics can be offered proton therapy. Radiation-induced neurocognitive function decline is a major concern in these long surviving patients. Although level 1 evidence of superior clinical outcome with proton therapy is lacking, the Dutch National Health Care Institute concluded that there is scientific evidence to assume that proton therapy can have clinical benefit by reducing radiation-induced brain damage. Based on this decision, proton therapy is standard insured care for selected low grade glioma patients. Patients with other intracranial tumours can also qualify for proton therapy, based on the same criteria. In this paper, the evidence and considerations that led to this decision are summarised. Additionally, the eligibility criteria for proton therapy and the steps taken to obtain high-quality data on treatment outcome are discussed.


Subject(s)
Brain Neoplasms , Glioma , Proton Therapy , Brain Neoplasms/radiotherapy , Glioma/radiotherapy , Humans , Netherlands , Prognosis , Proton Therapy/adverse effects , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL