Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Planta ; 259(6): 148, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717679

ABSTRACT

MAIN CONCLUSION: Mutation of OsSHR2 adversely impacted root and shoot growth and impaired plant response to N conditions, further reducing the yield per plant. Nitrogen (N) is a crucial factor that regulates the plant architecture. There is still a lack of research on it. In our study, it was observed that the knockout of the SHORTROOT 2 (OsSHR2) which was induced by N deficiency, can significantly affect the regulation of plant architecture response to N in rice. Under N deficiency, the mutation of OsSHR2 significantly reduced root growth, and impaired the sensitivity of the root meristem length to N deficiency. The mutants were found to have approximately a 15% reduction in plant height compared to wild type. But mutants showed a significant increase in tillering at post-heading stage, approximately 26% more than the wild type, particularly in high N conditions. In addition, due to reduced seed setting rate and 1000-grain weight, mutant yield was significantly decreased by approximately 33% under low N fertilizer supply. The mutation also changed the distribution of N between the vegetative and reproductive organs. Our findings suggest that the transcription factor OsSHR2 plays a regulatory role in the response of plant architecture and yield per plant to N in rice.


Subject(s)
Gene Expression Regulation, Plant , Nitrogen , Oryza , Transcription Factors , Gene Expression Regulation, Plant/drug effects , Meristem/genetics , Meristem/growth & development , Meristem/drug effects , Mutation , Nitrogen/metabolism , Nitrogen/pharmacology , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Oryza/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
J Exp Bot ; 74(8): 2542-2555, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36749713

ABSTRACT

Crown roots are the main components of the fibrous root system in cereal crops and play critical roles in plant adaptation; however, the molecular mechanisms underlying their formation in wheat (Triticum aestivum) have not been fully elucidated. In this study, we identified a wheat basic helix-loop-helix (bHLH) protein, TabHLH123, that interacts with the essential regulator of crown root initiation, MORE ROOT in wheat (TaMOR). TabHLH123 is expressed highly in shoot bases and roots. Ectopic expression of TabHLH123 in rice resulted in more roots compared with the wild type. TabHLH123 regulates the expression of genes controlling crown-root development and auxin metabolism, responses, and transport. In addition, we analysed the nucleotide sequence polymorphisms of TabHLH123s in the wheat genome and identified a superior haplotype, TabHLH123-6B, that is associated with high root dry weight and 1000-grain weight, and short plant height. Our study reveals the role of TabHLH123 in controlling the formation of crown roots and provides beneficial insights for molecular marker-assisted breeding in wheat.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Triticum , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Triticum/genetics , Triticum/metabolism
3.
J Exp Bot ; 73(16): 5529-5542, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35595300

ABSTRACT

Grain size is an important trait that directly affects grain yield in rice; however, the genetic and molecular mechanisms regulating grain size remain unclear. In this study, we identified a mutant, grain length and grain weight 10 (glw10), which exhibited significantly reduced grain length and grain weight. Histological analysis demonstrated that GLW10 affects cell expansion, which regulates grain size. MutMap-based gene mapping and transgenic experiments demonstrated that GLW10 encodes a putative brassinosteroid (BR) signalling kinase, OsBSK2. OsBSK2 is a plasma membrane protein, and an N-myristoylation site is needed for both membrane localization and function. OsBSK2 directly interacts with the BR receptor kinase OsBRI1; however, genetic experiments have demonstrated that OsBSK2 may regulate grain size independent of the BR signalling pathway. OsBSK2 can form a homodimer or heterodimer with OsBSK3 and OsBSK4, and silencing OsBSK2, OsBSK3, and OsBSK4 reduce grain size. This indicates that OsBSKs seem to function as homodimers or heterodimers to positively regulate grain size in rice. OsBSK2/3/4 are all highly expressed in young panicles and spikelet hulls, suggesting that they control grain size. In summary, our results provide novel insights into the function of BSKs in rice, and identify novel targets for improving grain size during crop breeding.


Subject(s)
Oryza , Brassinosteroids/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Breeding , Plant Proteins/genetics , Plant Proteins/metabolism
4.
Plant Mol Biol ; 105(1-2): 133-146, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33034884

ABSTRACT

KEY MESSAGE: Role of Rubisco Activase in imparting thermotolerance to the photosynthetic apparatus under high temperature. Thus, to improve the grain filling, we need to fine tune these crucial enzymes and their regulation, which directly or indirectly affect spike photosynthesis. CO2 fixation in cereals crops like bread wheat (Triticum aestivum L.) is also contributed by ear photosynthesis beside the other organs like leaves or the flag leaf. 1000-grain weight of three Indian wheat cultivars (cvs.) PBW343, K7903, and HD2329 were calculated under three treatments until maturity stage (i.e. removal of flag leaf, removal of awns and shaded spikes). We observed that awn removal showed a significant decrease in 1000-grain weight in all cultivars. To delve deeper into the biological and molecular pathways taking place underlying the awn physiology, we conducted the awn transcriptome analysis of thermosusceptible Indian wheat cv. PBW343 under heat stress (HS) at 42 °C for 2 h using RNA-sequencing (RNA-seq). Differential expression analysis revealed, 160 transcripts, out of these, 143 transcripts were significantly upregulated and 17 transcripts were repressed under HS conditions. Of these Rca1ß was selected for characterization and overexpression studies. Ectopic expression of TaRca1ß in rice transgenics indicate a direct correlation with tolerance under HS conditions. TaRca1ß provides a better photosynthate energy partitioning under HS with a significant reduction in the non-photochemical fluorescence quenching of the photosynthetic machinery.


Subject(s)
Gene Expression Regulation, Plant , Heat-Shock Response/physiology , Oryza/metabolism , Thermotolerance/physiology , Transcriptome , Triticum/genetics , Triticum/metabolism , Carbon Cycle , Edible Grain/metabolism , Gene Expression Profiling , Heat-Shock Response/genetics , Hot Temperature , Photosynthesis/physiology , Plant Leaves/metabolism , Plants, Genetically Modified , Thermotolerance/genetics , Transcription Factors/metabolism
5.
Plants (Basel) ; 12(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36903883

ABSTRACT

Genotype (cultivar), soil and climatic conditions, the agrotechnology used, and the interaction of the factors mentioned play a key role in the yield and quality of wheat grain. Currently, the European Union recommends the balanced use of mineral fertilisers and plant protection products in agricultural production (integrated production) or the use of only natural production methods (organic production). The aim of the study was to compare the yield and grain quality of four spring common wheat cultivars Harenda, Kandela, Mandaryna, and Serenada, grown under three farming systems: organic (ORG), integrated (INT), and conventional (CONV). A three-year field experiment was conducted between 2019 and 2021 at the Osiny Experimental Station (Poland, 51°27' N; 22°2' E). The results showed that significantly the highest wheat grain yield (GY) was obtained at INT, while the lowest was obtained at ORG. The physicochemical and rheological characteristics of the grain were significantly influenced by the cultivar factor and, with the exception of 1000 grain weight (TGW) and ash content (AC), by the farming system. There were also numerous interactions between the cultivar and farming systems, which suggests different performances of cultivars and, in fact, that some cultivars are better or worse suited to different production systems. The exceptions were protein content (PC) and falling number (FN), which were significantly highest in grain with CONV and lowest in grain with ORG farming systems.

6.
Breed Sci ; 62(1): 71-7, 2012 Mar.
Article in English | MEDLINE | ID: mdl-23136516

ABSTRACT

Five physiological and eleven yield traits of two pairs of sister lines generated from a high generation with similar genetic background (SLs) for purple pericarp were investigated to explore the reasons behind low-yield production of colored rice. Of the five physiological traits examined, except grain anthocyanin content, there were generally similar trends between the P (purple-pericarp) lines and the corresponding W (white-pericarp) lines over two seasons (in the year 2009 and 2010 separately). The results demonstrated that the chlorophyll content of flag leaves, the net photosynthetic rate of flag leaves, and the grain anthocyanin content could be easily influenced by the environment. The physiological functions of the traits for the P lines were more active than those of the corresponding W lines in the year 2010. The grain anthocyanin content of the P lines was much greater in the year 2010 than in the year 2009 during the growth period. The investigation of yield traits revealed that the P lines had reduced 1000-grain weight, yield per plot and grain/brown rice thickness compared to the W lines. A difference comparison of these traits and a source-sink and transportation relationship analysis for these SLs suggested that small sink size was a key reason behind yield reduction of purple pericarp rice.

7.
Plants (Basel) ; 11(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36559627

ABSTRACT

Heat stress around flowering is harmful to maize growth and yield. Ear traits are closely related to yield; however, the effects of heat stress before and after flowering on ear development and yield traits remain unclear for different heat-tolerant cultivars. In this study, field experiments were conducted in 2020 and 2021, including (i) three sowing dates, (ii) three temperature regimes: control (CK), heated before silking (V9-R1, TBS) and heated after silking (R1-R1 + 15 d, TAS), and (iii) two hybrids (ZD958: heat-tolerant; DH605: heat-sensitive). The results showed that heating had negative effects on all surveyed ear and yield traits except for increased ear length under TBS. The negative effects were larger (i) for TAS than for TBS, (ii) for DH605 than for ZD958, and (iii) for kernel number per plant (KNP) than for kernel weight (KW). The decreased ear traits were a result of a decreased growth rate during rapid ear growth periods. Floret pollination failure and kernel abortion were the main reasons for the decrease in KNP, mainly depending on the daily maximum temperature during V15-R1 + 7 d. The strong linear relationships between ear and yield traits suggested that ear traits could be used as important indicators for breeding heat-resistant varieties in the future.

8.
Saudi J Biol Sci ; 29(10): 103417, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36072014

ABSTRACT

Heat stress during the grain-filling period is the main abiotic stress factor limiting grain yield and quality in wheat (Triticum aestivum L.). In this study, 64 wheat genotypes were exposed to heat stress during reproduction caused by delayed sowing in two growing seasons. Grain yield, 1000 grain weight (GW), grain hardness (GH), and grain-quality related traits were investigated. Heat stress caused a significant decrease in GW through reducing starch content (SC) and a non-compensating rise in protein content (PC), and thereby resulted in lower yield. In addition, significant increases in flour water absorption (WA), Zeleny sedimentation volume (ZT), ash content (AC), lipid content (LC), loaf volume (LV), wet gluten content (WG), dry gluten content (DG), gluten index (GI), and amylopectin content (APC) were found following heat stress. In contrast, decreases in grain moisture content (MC) and amylose content (AMC) induced by heat stress were observed. The heat-tolerant genotypes were superior in grain yield, GW, SC, AMC, and MC. While the sensitive genotypes contained higher PC, LV, GI and AMP. A group of wheat genotypes characterized with a higher yield, AMC, GW, and SC as well as lower PC, WA, GH, ZT, and LV; and was found to be the most heat tolerant by principal component analysis. Lighter weight and smaller grains produce a smaller starchy endosperm with lower quality (less amylose) and higher grain protein content in heat stress compared to normal conditions. Heat stress caused by delayed sowing improves some of the baking-quality related traits.

9.
Plants (Basel) ; 9(12)2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33256095

ABSTRACT

Asian and African rice gene pools vary in many traits that are important in rice breeding. The genetic basis of these differences was evaluated by analysis of important agronomic traits in crosses between African and Asian rice. Trait-associated variants (TAVs) influencing three quantitative agronomic traits, heading date (Hd), tiller number at maturity (T), and 1000 grain weight (TGW), were identified by association analysis of crosses between Asian and African rice. Populations were developed by crossing WAB56-104 (Oryza sativa) and CG14 (Oryza glaberrima). DNA from plants with extremely high or low values for these phenotypes was bulked and sequenced. The reference genome of O. sativa cv Nipponbare was used in general association analysis and candidate gene analysis. A total of 5152 non-synonymous single nucleotide polymorphisms (SNPs) across 3564 genes distinguished the low and the high bulks for Hd, T, and TGW traits; 611 non-synonymous SNPs across 447 genes were found in KEGG pathways. Six non-synonymous SNPs were found in the sequences of LOC107275952, LOC4334529, LOC4326177, LOC107275432, LOC4335790, and LOC107275425 genes associated with Hd, T, and TGW traits. These genes were involved in: abscisic-acid biosynthesis, carotenoid biosynthesis, starch and sucrose metabolism, and cytokinin biosynthesis. Analysis of 24 candidate genes associated with Hd, T, and TGW traits showed seven non-synonymous variations in the sequence of Hd3a and Ehd2 from the Hd genes (not in a KEGG pathway), D10 and D53 from the T genes (strigolactones biosynthetic pathway), and Gn1a and GIF1 from the TGW genes (cytokinin biosynthetic and starch and sucrose metabolism pathways). This study identified significant differences in allele frequencies supported by high sequence depth in analysis of bulks displaying high and low values for these key traits. These trait-associated variants are likely to be useful in rice improvement.

10.
Plants (Basel) ; 8(7)2019 Jul 12.
Article in English | MEDLINE | ID: mdl-31336902

ABSTRACT

Ground-level ozone (O3) pollution is known to adversely affect the production of O3-sensitive crops such as wheat. The magnitude of impact is dependent on the accumulated stomatal flux of O3 into the leaves. In well-irrigated plants, the leaf pores (stomata) tend to be wide open, which stimulates the stomatal flux and therefore the adverse impact of O3 on yield. To test whether reduced irrigation might mitigate O3 impacts on flag leaf photosynthesis and yield parameters, we exposed an O3-sensitive Kenyan wheat variety to peak concentrations of 30 and 80 ppb O3 for four weeks in solardomes and applied three irrigation regimes (well-watered, frequent deficit, and infrequent deficit irrigation) during the flowering and grain filling stage. Reduced irrigation stimulated 1000-grain weight and harvest index by 33% and 13%, respectively (when O3 treatments were pooled), which compensated for the O3-induced reductions observed in well-watered plants. Whilst full irrigation accelerated the O3-induced reduction in photosynthesis by a week, such an effect was not observed for the chlorophyll content index of the flag leaf. Further studies under field conditions are required to test whether reduced irrigation can be applied as a management tool to mitigate adverse impacts of O3 on wheat yield.

11.
Environ Pollut ; 197: 203-213, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25577485

ABSTRACT

We synthesized the effects of ozone on wheat quality based on 42 experiments performed in Asia, Europe and North America. Data were analysed using meta-analysis and by deriving response functions between observed effects and daytime ozone concentration. There was a strong negative effect on 1000-grain weight and weaker but significant negative effects on starch concentration and volume weight. For protein and several nutritionally important minerals (K, Mg, Ca, P, Zn, Mn, Cu) concentration was significantly increased, but yields were significantly decreased by ozone. For other minerals (Fe, S, Na) effects were not significant or results inconclusive. The concentration and yield of potentially toxic Cd were negatively affected by ozone. Some baking properties (Zeleny value, Hagberg falling number) were positively influenced by ozone. Effects were similar in different exposure systems and for spring and winter wheat. Ozone effects on quality should be considered in future assessments of food security/safety.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Triticum/growth & development , Asia , Edible Grain , Minerals/analysis , Plant Oils , Plant Structures , Seasons , Starch , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL