ABSTRACT
The synthesis of new ribosomes begins during transcription of the rRNA and is widely assumed to follow an orderly 5' to 3' gradient. To visualize co-transcriptional assembly of ribosomal protein-RNA complexes in real time, we developed a single-molecule platform that simultaneously monitors transcription and protein association with the elongating transcript. Unexpectedly, the early assembly protein uS4 binds newly made pre-16S rRNA only transiently, likely due to non-native folding of the rRNA during transcription. Stable uS4 binding became more probable only in the presence of additional ribosomal proteins that bind upstream and downstream of protein uS4 by allowing productive assembly intermediates to form earlier. We propose that dynamic sampling of elongating RNA by multiple proteins overcomes heterogeneous RNA folding, preventing assembly bottlenecks and initiating assembly within the transcription time window. This may be a common feature of transcription-coupled RNP assembly.
Subject(s)
Ribonucleoproteins/metabolism , Transcription, Genetic , Fluorescence , Models, Biological , Protein Binding , Protein Stability , RNA Precursors/biosynthesis , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Transcription Elongation, GeneticABSTRACT
BACKGROUND: Mediterraneibacter gnavus is a Gram positive, non-sporulated, obligate anaerobe diplococci. It was first described in 1974 by Moore et al. (under the name Ruminococcus gnavus) from faeces and contents of the gastrointestinal tract of humans. It is a relatively common member of the human gut microbiota, nevertheless its role as a pathogenic bacterium has not been completely elucidated yet and it seems to depend on numerous factors, including those of the host. Here we present a case of prosthetic joint infection following total knee arthroplasty by M. gnavus. CASE PRESENTATION: A 74 years old patient was admitted to the emergency department presenting with acute onset of left knee pain and swelling 20 days after total left knee arthroplasty. Follow-up revealed erythema and oedema without signs of fluctuation or purulent discharge from the surgical wound and elevated inflammatory reactants. Synovial fluid was taken for bacterial culture and antibiotic treatment with ceftazidime and daptomycin was established. Examination of the synovial fluid revealed abundant polymorphonuclear leucocytes, without visualizing bacteria. After four days of incubation, anaerobic culture exhibit growth of small, grey, umbilicated colonies in pure culture on Schaedler agar. The microorganism was identified as R. gnavus by MALDI-TOF (Bruker Daltonics) and M. gnavus by 16S ribosomal bacterial sequencing. The isolated showed susceptibility to the most commonly used anaerobicidal antibiotics except for clindamycin. Surgical treatment and infection source control included DAIR (debridement, antibiotics, and implant retention) and vacuum assisted therapy. The patient was discharged after six weeks with a 3-month course of oral amoxicillin as consolidation therapy. Subsequent follow-up revealed adequate wound healing with no signs of infection. CONCLUSIONS: Mediterraneibacter gnavus have been reported as the causal microorganism in a range of human infections, nevertheless its identification remains challenging. Infection of prosthetic joints by anaerobic microorganisms is uncommon and is not considered in its empirical antibiotic treatment, thus, correct and swift identification of anaerobic bacteria in these cases is paramount.
Subject(s)
Anti-Bacterial Agents , Arthroplasty, Replacement, Knee , Gram-Positive Bacterial Infections , Prosthesis-Related Infections , Humans , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/drug therapy , Arthroplasty, Replacement, Knee/adverse effects , Aged , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/diagnosis , Anti-Bacterial Agents/therapeutic use , Male , RNA, Ribosomal, 16S/genetics , Bacteria, Anaerobic/isolation & purification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/classification , Synovial Fluid/microbiologyABSTRACT
Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.
Subject(s)
Cattle Diseases , Diarrhea , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Cattle , Diarrhea/veterinary , Diarrhea/microbiology , Feces/microbiology , Cattle Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/geneticsABSTRACT
IMPORTANCE: Biological wastewater treatment relies on complex microbial communities that assimilate nutrients and break down pollutants in the wastewater. Knowledge about the physiology and metabolism of bacteria in wastewater treatment plants (WWTPs) may therefore be used to improve the efficacy and economy of wastewater treatment. Our current knowledge is largely based on 16S rRNA gene amplicon profiling, fluorescence in situ hybridization studies, and predictions based on metagenome-assembled genomes. Bacterial isolates are often required to validate genome-based predictions as they allow researchers to analyze a specific species without interference from other bacteria and with simple bulk measurements. Unfortunately, there are currently very few pure cultures representing the microbes commonly found in WWTPs. To address this, we introduce an isolation strategy that takes advantage of state-of-the-art microbial profiling techniques to uncover suitable growth conditions for key WWTP microbes. We furthermore demonstrate that this information can be used to isolate key organisms representing global WWTPs.
Subject(s)
Bacteria , Sewage , Sewage/microbiology , RNA, Ribosomal, 16S/genetics , In Situ Hybridization, Fluorescence , WastewaterABSTRACT
Moonmilk is a cave deposit that was used for medical and cosmetic purposes and has lately raised interest for its antimicrobial potential. We studied five moonmilk samples from four caves with different microclimatic conditions, two temperate in north-western and northern Romania (Ferice, FaÈa Apei, and Izvorul TauÈoarelor caves) and one tropical in Minas Gerais, Brazil (Nestor Cave). The physicochemical and mineralogical analyses confirmed the presence of calcite and dolomite as the main phase in the moonmilk. A 16S rRNA gene-based metabarcoding approach showed the most abundant bacteria phyla Proteobacteria, GAL15, Actinobacteriota, and Acidobacteriota. The investigated caves differed in the dominant orders of bacteria, with the highest distance between the Romanian and Nestor Cave samples. Climate and, implicitly, the soil microbiome can be responsible for some differences we found between all the samples. However, other factors can be involved in shaping the moonmilk microbiome, as differences were found between samples in the same cave (Ferice). In our five moonmilk samples, 1 phylum, 70 orders (~ 36%), and 252 genera (~ 47%) were unclassified, which hints at the great potential of cave microorganisms for future uses.
Subject(s)
Caves , Microbiota , Caves/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/genetics , Proteobacteria/geneticsABSTRACT
This experiment was conducted to investigate the effects of different starch source diets on growth performance, intestinal health, and, microbiota of growing pigs. Eighteen healthy "Duroc × Landrace × Yorkshire" pigs (50 ± 0.61 kg, Castrated boar) were randomly divided into three groups with six replicates and one pig per replicate. The pigs in the three treatments were fed diets prepared with cassava flour (CF), rice bran (RB) and sorghum flour (SF), respectively, and the nutritional levels of the three treatments were the same. The experiment lasted for 28 days. The results showed that pigs in the RB group had significantly increased average daily gain (ADG, p < 0.05) compared with pigs in CF and SF groups. Compared with pigs in the CF group, the final body weight (FBW) of growing pigs in the RB group was increased and the ratio of feed to gain (F: G) was decreased (p < 0.05). There was no significant difference between FBW and F: G between the SF group and the other two groups. Compared with the CF group, the RB group significantly increased the jejunum amylase activity (p < 0.05), and there was no significant difference between the SF group and the other two groups. Compared with growing pigs in the CF group and SF group, the duodenal villus height and villus height/crypt depth ratio of growing pigs in the RB group were significantly increased (p < 0.05). The concentrations of acetic acid, propionic acid, and total VFA in the colon and caecum of piglets in the SF group were significantly increased (p < 0.05) compared to piglets in CF and RB groups, and there was no significant difference between the CF group and RB group. Compared with the RB group, caecal butyric acid concentration was significantly increased in SF and CF groups (p < 0.05). Seven dominant phyla were identified at the phylum level, among which Firmicutes, Bacteroidota and Spirochaetota were dominant phyla, accounting for 74.18%, 14.87% and 6.56% of the RB group respectively. Cassava flour group accounted for 80.22%, 9.64% and 3.71%; Accounting for 65.33%, 17.34% and 13.07% of the SF group. Through the comparative analysis of microbial differences among the treatment groups, it was found that at the phylum level, compared with the SF group, the abundance of Synergistota in the diet of the CF group and the diet of the RB group was significantly increased (p < 0.05). The abundance decreased significantly (p < 0.05). The quantity of Desulfobacterota in the RB group was significantly higher than that in the CF group (p < 0.05). In conclusion, compared with sorghum starch and cassava starch, RB starch can improve the activity of digestive enzymes and villus height in the small intestine of growing pigs and promote the growth of pigs by protecting the intestinal health of growing pigs.
Subject(s)
Microbiota , Starch , Animals , Male , Animal Feed/analysis , Body Weight , Diet/veterinary , Intestines , SwineABSTRACT
BACKGROUND: Interplay between vaginal microbiome and human papillomavirus (HPV) remains unclear, partly due to heterogeneity of microbiota. METHODS: We used data from 546 women enrolled in a cross-sectional study in 5 Brazil. We genotyped vaginal samples for HPV and sequenced V3-V4 region of 16S rRNA gene for vaginal microbiome analysis. We used stepwise logistic regression to construct 2 linear scores to predict high-risk HPV (hrHPV) positivity: one based exclusively on presence of individual bacterial taxa (microbiome-based [MB] score) and the other exclusively on participants' sociodemographic, behavioral, and clinical (SBC) characteristics. MB score combined coefficients of 30 (of 116) species. SBC score retained 6 of 25 candidate variables. We constructed receiver operating characteristic curves for scores as hrHPV correlates and compared areas under the curve (AUC) and 95% confidence intervals (CI). RESULTS: Overall, prevalence of hrHPV was 15.8%, and 26.2% had a Lactobacillus-depleted microbiome. AUCs were 0.8022 (95% CI, .7517-.8527) for MB score and 0.7027 (95% CI, .6419-.7636) for SBC score (Pâ =â .0163). CONCLUSIONS: The proposed MB score is strongly correlated with hrHPV positivity-exceeding the predictive value of behavioral variables-suggesting its potential as an indicator of infection and possible value for clinical risk stratification.
Subject(s)
Alphapapillomavirus , Microbiota , Papillomavirus Infections , Uterine Cervical Neoplasms , Alphapapillomavirus/genetics , Cross-Sectional Studies , Female , Humans , Microbiota/genetics , Papillomaviridae/genetics , Papillomavirus Infections/epidemiology , RNA, Ribosomal, 16S/genetics , Vagina/microbiologyABSTRACT
BACKGROUND: Large-scale gut microbiome sequencing has revealed key links between microbiome dysfunction and metabolic diseases such as type 2 diabetes (T2D). To date, these efforts have largely focused on Western populations, with few studies assessing T2D microbiota associations in Middle Eastern communities where T2D prevalence is now over 20%. We analyzed the composition of stool 16S rRNA from 461 T2D and 119 non-T2D participants from the Eastern Province of Saudi Arabia. We quantified the abundance of microbial communities to examine any significant differences between subpopulations of samples based on diabetes status and glucose level. RESULTS: In this study we performed the largest microbiome study ever conducted in Saudi Arabia, as well as the first-ever characterization of gut microbiota T2D versus non-T2D in this population. We observed overall positive enrichment within diabetics compared to healthy individuals and amongst diabetic participants; those with high glucose levels exhibited slightly more positive enrichment compared to those at lower risk of fasting hyperglycemia. In particular, the genus Firmicutes was upregulated in diabetic individuals compared to non-diabetic individuals, and T2D was associated with an elevated Firmicutes/Bacteroidetes ratio, consistent with previous findings. CONCLUSION: Based on diabetes status and glucose levels of Saudi participants, relatively stable differences in stool composition were perceived by differential abundance and alpha diversity measures. However, community level differences are evident in the Saudi population between T2D and non-T2D individuals, and diversity patterns appear to vary from well-characterized microbiota from Western cohorts. Comparing overlapping and varying patterns in gut microbiota with other studies is critical to assessing novel treatment options in light of a rapidly growing T2D health epidemic in the region. As a rapidly emerging chronic condition in Saudi Arabia and the Middle East, T2D burdens have grown more quickly and affect larger proportions of the population than any other global region, making a regional reference T2D-microbiome dataset critical to understanding the nuances of disease development on a global scale.
Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Microbiota , Humans , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , GlucoseABSTRACT
Microorganisms play a vital role in the decomposition of vertebrate remains in natural nutrient cycling, and the postmortem microbial succession patterns during decomposition remain unclear. The present study used hierarchical clustering based on Manhattan distances to analyze the similarities and differences among postmortem intestinal microbial succession patterns based on microbial 16S rDNA sequences in a mouse decomposition model. Based on the similarity, seven different classes of succession patterns were obtained. Generally, the normal intestinal flora in the cecum was gradually decreased with changes in the living conditions after death, while some facultative anaerobes and obligate anaerobes grew and multiplied upon oxygen consumption. Furthermore, a random forest regression model was developed to predict the postmortem interval based on the microbial succession trend dataset. The model demonstrated a mean absolute error of 20.01 h and a squared correlation coefficient of 0.95 during 15-day decomposition. Lactobacillus, Dubosiella, Enterococcus, and the Lachnospiraceae NK4A136 group were considered significant biomarkers for this model according to the ranked list. The present study explored microbial succession patterns in terms of relative abundances and variety, aiding in the prediction of postmortem intervals and offering some information on microbial behaviors in decomposition ecology.
Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Postmortem Changes , Bacteria/genetics , Intestines , LactobacillusABSTRACT
OBJECTIVES: Although the mature peri-implant biofilm composition is well studied, there is very little information on the succession of in vivo dental implant colonization. The aim of this study was to characterize the temporal changes and diversity of peri-implant supra-mucosal and sub-mucosal microbiota during the process of the plaque maturation. MATERIALS AND METHODS: Dental implants (n = 25) were placed in the mandible of 3 beagle dogs. Illumina MiSeq sequencing of the hypervariable V3-V4 region of the 16S rRNA gene amplicons was used to characterize the supra/sub-mucosal microbiota in the peri-implant niches at 1day (T1), 7days (T2), 14days (T3), 21days (T4) and 28days (T5) after Phase â ¡ surgery of the healing abutment placement. QIIME, Mothur, LEfSe and R-package were used for downstream analysis. RESULTS: A total of 1184 operational taxonomic units (OTUs), assigned into 22 phyla, 264 genera and 339 species were identified. In supra-mucosal niches, the alpha parameters of shannon, sobs and chao1 displayed significant differences between T1 and other time-points. However, in sub-mucosal niches, only sobs, chao1, and ace indexes displayed significant differences between T1 and T3, and T1 and T5. Beta-diversity showed statistically significant difference between T1 and T2, T3, T4, T5 within both sub-mucosal and supra-mucosal plaque. The phyla Bacteroidetes, Proteobacteria and Firmicutes were the most dominant phyla of both sub-mucosal and supra-mucosal niches at all time-points and Firmicutes increased during the maturation of peri-implant plaque. At the genus level, Neisseria decreased significantly after T1 suggesting the establishment of an anaerobic microenvironment. A decrease of Porphyromonas during the formation of sub-mucosal microbial community was also detected. Co-occurrence network analysis exhibited a more complicated co-occurrence relationship of bacterial species in the sub-mucosal niches. Fusobacterium nucleatum, Filifactor villosus, and some other species may play a crucial role in biofilm maturation. CONCLUSIONS: The present results suggested that the development of peri-implant biofilm followed a similar pattern to dental plaque formation. Sub-mucosal biofilm may go through a more complicated procedure of maturation than supra-mucosal biofilm.
Subject(s)
Dental Implants , Microbiota , Animals , Biofilms , Clostridiales , Dogs , RNA, Ribosomal, 16S/geneticsABSTRACT
OBJECTIVE: The aim of this study was to investigate the composition of the intestinal microbiota and its association with fecal short chain fatty acids (SCFAs) in children with drug refractory epilepsy (DRE) before and after treatment with a ketogenic diet (KD). METHODS: Herein, we conducted a cross-sectional study of 12 children with DRE and 12 matched healthy controls to compare the changes in fecal microbiomes and SCFAs. Disease cohort also underwent analysis before and after 6 months of KD treatment. RESULTS: A higher microbial alpha diversity and a significant increase in Actinobacteria at the phylum level and Enterococcus, Anaerostipes, Bifidobacterium, Bacteroides, and Blautia at the genus level were observed in the children with DRE. The abundance of the eight epileptic-associated genera was reversed after six months of KD treatment with decreases in Bifidobacterium, Akkermansia, Enterococcaceae and Actinomyces and increases in Subdoligranulum, Dialister, Alloprevotella (p < 0.05). In particular, we identified some taxa that were more prevalent in patients with an inadequate response to KD than in those with an adequate response. Further, a significant correlation was observed between the change in the microbiome genera after KD treatment. The SCFA content in the fecal after 6 months of KD treatment increased and was highly correlated with the gut bacteria. SIGNIFICANCES: Dysbiosis of the microbiome could be involved in the pathogenesis of DRE in children, which can be relieved by a KD to a large extent. Gut microbiota and microbial metabolism could contribute to the antiseizure effect of KD.
Subject(s)
Diet, Ketogenic , Epilepsy , Gastrointestinal Microbiome , Child , Cross-Sectional Studies , Dysbiosis , Feces , HumansABSTRACT
BACKGROUND: The placenta plays an important role in the modulation of pregnancy immunity; however, there is no consensus regarding the existence of a placental microbiome in healthy full-term pregnancies. OBJECTIVE: This study aimed to investigate the existence and origin of a placental microbiome. STUDY DESIGN: A cross-sectional study comparing samples (3 layers of placental tissue, amniotic fluid, vernix caseosa, and saliva, vaginal, and rectal samples) from 2 groups of full-term births: 50 women not in labor with elective cesarean deliveries and 26 with vaginal deliveries. The comparisons were performed using polymerase chain reaction amplification and DNA sequencing techniques and bacterial culture experiments. RESULTS: There were no significant differences regarding background characteristics between women who delivered by elective cesarean and those who delivered vaginally. Quantitative measurements of bacterial content in all 3 placental layers (quantitative polymerase chain reaction of the 16S ribosomal RNA gene) did not show any significant difference among any of the sample types and the negative controls. Here, 16S ribosomal RNA gene sequencing of the maternal side of the placenta could not differentiate between bacteria in the placental tissue and contamination of the laboratory reagents with bacterial DNA. Probe-specific quantitative polymerase chain reaction for bacterial taxa suspected to be present in the placenta could not detect any statistically significant difference between the 2 groups. In bacterial cultures, substantially more bacteria were observed in the placenta layers from vaginal deliveries than those from cesarean deliveries. In addition, 16S ribosomal RNA gene sequencing of bacterial colonies revealed that most of the bacteria that grew on the plates were genera typically found in human skin; moreover, it revealed that placentas delivered vaginally contained a high prevalence of common vaginal bacteria. Bacterial growth inhibition experiments indicated that placental tissue may facilitate the inhibition of bacterial growth. CONCLUSION: We found no evidence to support the existence of a placental microbiome in our study of 76 term pregnancies, which used polymerase chain reaction amplification and sequencing techniques and bacterial culture experiments. Incidental findings of bacterial species could be due to contamination or to low-grade bacterial presence in some locations; such bacteria do not represent a placental microbiome per se.
Subject(s)
Microbiota , Placenta/microbiology , Adult , Cross-Sectional Studies , Female , Humans , Middle Aged , Pregnancy , Term Birth , Young AdultABSTRACT
Cantaloupe melons, which have been responsible of an increasing number of foodborne disease outbreaks, may become contaminated with microbial pathogens during production. However, little information is available on the microbial populations in the cantaloupe farm environment. The purpose of this work was to characterize the bacterial communities present on cantaloupe farms. Fruit, soil, and harvester hand rinsates were collected from two Mexican cantaloupe farms, each visited three times. Microbiome analysis was performed by sequencing 16sRNA and analyzed using qiime2 software. Correlations were determined between sample type and microbial populations. The α and ß diversity analysis identified 2777 sequences across all samples. The soil samples had the highest number and diversity of unique species (from 130 to 1329 OTUs); cantaloupe (from 112 to 205 OTUs), and hands (from 67 to 151 OTUs) had similar diversity. Collectively, Proteobacteria was the most abundant phyla (from 42 to 95%), followed by Firmicutes (1-47%), Actinobacteria (< 1 to 23%), and Bacteroidetes (< 1 to 4.8%). The most abundant genera were Acinetobacter (20-58%), Pseudomonas (14.5%), Erwinia (13%), and Exiguobacterium (6.3%). Genera with potential to be pathogenic included Bacillus (4%), Salmonella (0.85%), Escherichia-Shigella (0.38%), Staphylococcus (0.32%), Listeria (0.29%), Clostridium (0.28%), and Cronobacter (0.27%), which were found at lower frequencies. This study provides information on the cantaloupe production microbiome, which can inform future research into critical food safety issues such as antimicrobial resistance, virulence, and genomic epidemiology.
Subject(s)
Cucurbitaceae , Bacteria/genetics , Genes, rRNA , RNA, Ribosomal, 16S/genetics , SalmonellaABSTRACT
AIMS/HYPOTHESIS: Abnormal gut microbiota and blood metabolome profiles have been reported both in children and adults with uncomplicated type 1 diabetes as well as in adults with type 1 diabetes and advanced stages of diabetic nephropathy. In this study we aimed to investigate the gut microbiota and a panel of targeted plasma metabolites in individuals with type 1 diabetes of long duration without and with different levels of albuminuria. METHODS: In a cross-sectional study we included 161 individuals with type 1 diabetes and 50 healthy control individuals. Individuals with type 1 diabetes were categorised into three groups according to historically measured albuminuria: (1) normoalbuminuria (<3.39 mg/mmol); (2) microalbuminuria (3.39-33.79 mg/mmol); and (3) macroalbuminuria (≥33.90 mg/mmol). From faecal samples, the gut microbiota composition at genus level was characterised by 16S rRNA gene amplicon sequencing and in plasma a targeted profile of 31 metabolites was analysed with ultra HPLC coupled to MS/MS. RESULTS: Study participants were aged 60 ± 11 years (mean ± SD) and 42% were women. The individuals with type 1 diabetes had had diabetes for a mean of 42 ± 15 years and had an eGFR of 75 ± 25 ml min-1 (1.73 m)-2. Measures of the gut microbial beta diversity differed significantly between healthy controls and individuals with type 1 diabetes, either with micro- or macroalbuminuria. Taxonomic analyses showed that 79 of 324 genera differed in relative abundance between individuals with type 1 diabetes and healthy controls and ten genera differed significantly among the three albuminuria groups with type 1 diabetes. For the measured plasma metabolites, 11 of 31 metabolites differed significantly between individuals with type 1 diabetes and healthy controls. When individuals with type 1 diabetes were stratified by the level of albuminuria, individuals with macroalbuminuria had higher plasma concentrations of indoxyl sulphate and L-citrulline than those with normo- or microalbuminuria and higher plasma levels of homocitrulline and L-kynurenine compared with individuals with normoalbuminuria. Whereas plasma concentrations of tryptophan were lower in individuals with macroalbuminuria compared with those with normoalbuminuria. CONCLUSIONS/INTERPRETATION: We demonstrate that individuals with type 1 diabetes of long duration are characterised by aberrant profiles of gut microbiota and plasma metabolites. Moreover, individuals with type 1 diabetes with initial stages of diabetic nephropathy show different gut microbiota and plasma metabolite profiles depending on the level of albuminuria. Graphical abstract.
Subject(s)
Albuminuria/blood , Diabetes Mellitus, Type 1/blood , Aged , Albuminuria/microbiology , Cross-Sectional Studies , Diabetes Mellitus, Type 1/microbiology , Female , Gastrointestinal Microbiome/physiology , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/metabolismABSTRACT
Amplicon sequencing of the 16S rRNA gene is commonly used for the identification of bacterial isolates in diagnostic laboratories and mostly relies on the Sanger sequencing method. The latter, however, suffers from a number of limitations, with the most significant being the inability to resolve mixed amplicons when closely related species are coamplified from a mixed culture. This often leads to either increased turnaround time or absence of usable sequence data. Short-read next-generation sequencing (NGS) technologies could solve the mixed amplicon issue but would lack both cost efficiency at low throughput and fast turnaround times. Nanopore sequencing developed by Oxford Nanopore Technologies (ONT) could solve those issues by enabling a flexible number of samples per run and an adjustable sequencing time. Here, we report on the development of a standardized laboratory workflow combined with a fully automated analysis pipeline LORCAN (long read consensus analysis), which together provide a sample-to-report solution for amplicon sequencing and taxonomic identification of the resulting consensus sequences. Validation of the approach was conducted on a panel of reference strains and on clinical samples consisting of single or mixed rRNA amplicons associated with various bacterial genera by direct comparison to the corresponding Sanger sequences. Additionally, simulated read and amplicon mixtures were used to assess LORCAN's behavior when dealing with samples with known cross-contamination levels. We demonstrate that by combining ONT amplicon sequencing results with LORCAN, the accuracy of Sanger sequencing can be closely matched (>99.6% sequence identity) and that mixed samples can be resolved at the single-base resolution level. The presented approach has the potential to significantly improve the flexibility, reliability, and availability of amplicon sequencing in diagnostic settings.
Subject(s)
Nanopore Sequencing , Bacteria/genetics , High-Throughput Nucleotide Sequencing , Humans , RNA, Ribosomal, 16S/genetics , Reproducibility of ResultsABSTRACT
BACKGROUND: Postoperative complications are of great relevance in daily clinical practice, and the gut microbiome might play an important role by preventing pathogens from crossing the intestinal barrier. The two aims of this prospective clinical pilot study were: (1) to examine changes in the gut microbiome following pancreatic surgery, and (2) to correlate these changes with the postoperative course of the patient. RESULTS: In total, 116 stool samples of 32 patients undergoing pancreatic surgery were analysed by 16S-rRNA gene next-generation sequencing. One sample per patient was collected preoperatively in order to determine the baseline gut microbiome without exposure to surgical stress and/or antibiotic use. At least two further samples were obtained within the first 10 days following the surgical procedure to observe longitudinal changes in the gut microbiome. Whenever complications occurred, further samples were examined. Based on the structure of the gut microbiome, the samples could be allocated into three different microbial communities (A, B and C). Community B showed an increase in Akkermansia, Enterobacteriaceae and Bacteroidales as well as a decrease in Lachnospiraceae, Prevotella and Bacteroides. Patients showing a microbial composition resembling community B at least once during the observation period were found to have a significantly higher risk for developing postoperative complications (B vs. A, odds ratio = 4.96, p < 0.01**; B vs. C, odds ratio = 2.89, p = 0.019*). CONCLUSIONS: The structure of the gut microbiome is associated with the development of postoperative complications.
Subject(s)
Bacteria/classification , Gastrointestinal Microbiome , Pancreatic Diseases/surgery , Postoperative Complications/microbiology , Aged , Bacteria/isolation & purification , Feces/microbiology , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Odds Ratio , Phylogeny , Pilot Projects , Prospective Studies , RNA, Ribosomal, 16S/genetics , Risk FactorsABSTRACT
We report a case of a 58-year-old male patient who underwent several surgeries following an accident. The bacterium Robinsoniella peoriensis was detected independently in multiple samples from both the right talus and tibia. The bacterium could only be identified using 16S rRNA gene sequencing.
Subject(s)
Bone and Bones/microbiology , Clostridiales/isolation & purification , Osteomyelitis/diagnosis , Osteomyelitis/microbiology , Wounds and Injuries/complications , Clostridiales/classification , Clostridiales/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Male , Middle Aged , Osteomyelitis/pathology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNAABSTRACT
Young African females are at an increased risk of HIV acquisition, and genital inflammation or the vaginal microbiome may contribute to this risk. We studied these factors in 168 HIV-negative South African adolescent females aged 16 to 22 years. Unsupervised clustering of 16S rRNA gene sequences revealed three clusters (subtypes), one of which was strongly associated with genital inflammation. In a multivariate model, the microbiome compositional subtype and hormonal contraception were significantly associated with genital inflammation. We identified 40 taxa significantly associated with inflammation, including those reported previously (Prevotella, Sneathia, Aerococcus, Fusobacterium, and Gemella) as well as several novel taxa (including increased frequencies of bacterial vaginosis-associated bacterium 1 [BVAB1], BVAB2, BVAB3, Prevotella amnii, Prevotella pallens, Parvimonas micra, Megasphaera, Gardnerella vaginalis, and Atopobium vaginae and decreased frequencies of Lactobacillus reuteri, Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners). Women with inflammation-associated microbiomes had significantly higher body mass indices and lower levels of endogenous estradiol and luteinizing hormone. Community functional profiling revealed three distinct vaginal microbiome subtypes, one of which was characterized by extreme genital inflammation and persistent bacterial vaginosis (BV); this subtype could be predicted with high specificity and sensitivity based on the Nugent score (≥9) or BVAB1 abundance. We propose that women with this BVAB1-dominated subtype may have chronic genital inflammation due to persistent BV, which may place them at a particularly high risk for HIV infection.
Subject(s)
Genitalia/microbiology , Inflammation/microbiology , Reproductive Tract Infections/microbiology , Vaginosis, Bacterial/microbiology , Adolescent , Female , HIV Infections/microbiology , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Young AdultABSTRACT
Prosthetic joint failure is mainly caused by infection, aseptic failure (AF), and mechanical problems. Infection detection has been improved with modified culture methods and molecular diagnostics. However, comparisons between modified and conventional microbiology methods are difficult due to variations in specimen sampling. In this prospective, multidisciplinary study of hip or knee prosthetic failures, we assessed the contributions of different specimen types, extended culture incubations, and 16S rRNA sequencing for diagnosing prosthetic joint infections (PJI). Project specimens included joint fluid (JF), bone biopsy specimens (BB), soft-tissue biopsy specimens (STB), and swabs (SW) from the prosthesis, collected in situ, and sonication fluid collected from prosthetic components (PC). Specimens were cultured for 6 (conventional) or 14 days, and 16S rRNA sequencing was performed at study completion. Of the 156 patients enrolled, 111 underwent 114 surgical revisions (cases) due to indications of either PJI (n = 43) or AF (n = 71). Conventional tissue biopsy cultures confirmed PJI in 28/43 (65%) cases and refuted AF in 3/71 (4%) cases; one case was not evaluable. Based on these results, minor diagnostic adjustments were made. Fourteen-day cultures of JF, STB, and PC specimens confirmed PJI in 39/42 (93%) cases, and 16S rRNA sequencing confirmed PJI in 33/42 (83%) cases. One PJI case was confirmed with 16S rRNA sequencing alone and five with cultures of project specimens alone. These findings indicated that JF, STB, and PC specimen cultures qualified as an optimal diagnostic set. The contribution of sequencing to diagnosis of PJI may depend on patient selection; this hypothesis requires further investigation.
Subject(s)
Bacterial Infections/diagnosis , Bacteriological Techniques/methods , Molecular Diagnostic Techniques/methods , Osteoarthritis, Hip/diagnosis , Osteoarthritis, Knee/diagnosis , Prosthesis-Related Infections/diagnosis , Biopsy , Bone and Bones/microbiology , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , Prospective Studies , Prostheses and Implants/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Synovial Fluid/microbiologyABSTRACT
The development and continuous improvement of high-throughput sequencing platforms have stimulated interest in the study of complex microbial communities. Currently, the most popular sequencing approach to study microbial community composition and dynamics is targeted 16S rRNA gene metabarcoding. To prepare samples for sequencing, there are a variety of processing steps, each with the potential to introduce bias at the data analysis stage. In this short review, key information from the literature pertaining to each processing step is described, and consequently, general recommendations for future 16S rRNA gene metabarcoding experiments are made.