Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cell ; 185(21): 3980-3991.e18, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36182704

ABSTRACT

Simian arteriviruses are endemic in some African primates and can cause fatal hemorrhagic fevers when they cross into primate hosts of new species. We find that CD163 acts as an intracellular receptor for simian hemorrhagic fever virus (SHFV; a simian arterivirus), a rare mode of virus entry that is shared with other hemorrhagic fever-causing viruses (e.g., Ebola and Lassa viruses). Further, SHFV enters and replicates in human monocytes, indicating full functionality of all of the human cellular proteins required for viral replication. Thus, simian arteriviruses in nature may not require major adaptations to the human host. Given that at least three distinct simian arteriviruses have caused fatal infections in captive macaques after host-switching, and that humans are immunologically naive to this family of viruses, development of serology tests for human surveillance should be a priority.


Subject(s)
Arterivirus , Hemorrhagic Fevers, Viral , Animals , Arterivirus/physiology , Hemorrhagic Fevers, Viral/veterinary , Hemorrhagic Fevers, Viral/virology , Humans , Macaca , Primates , Viral Zoonoses , Virus Internalization , Virus Replication
2.
Front Immunol ; 13: 963923, 2022.
Article in English | MEDLINE | ID: mdl-36091073

ABSTRACT

IFN is the most potent antiviral cytokine required for the innate and adaptive immune responses, and its expression can help the host defend against viral infection. Arteriviruses have evolved strategies to antagonize the host cell's innate immune responses, interfering with IFN expression by interfering with RIG, blocking PRR, obstructing IRF-3/7, NF-κB, and degrading STAT1 signaling pathways, thereby assisting viral immune evasion. Arteriviruses infect immune cells and may result in persistence in infected hosts. In this article, we reviewed the strategies used by Arteriviruses to antagonize IFN production and thwart IFN-activated antiviral signaling, mainly including structural and nonstructural proteins of Arteriviruses encoding IFN antagonists directly or indirectly to disrupt innate immunity. This review will certainly provide a better insight into the pathogenesis of the arthritis virus and provide a theoretical basis for developing more efficient vaccines.


Subject(s)
Arterivirus , Interferons , Antiviral Agents , Immune Evasion , Immunity, Innate
3.
Viruses ; 13(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34578423

ABSTRACT

Recent years have witnessed the discovery of several new viruses belonging to the family Arteriviridae, expanding the known diversity and host range of this group of complex RNA viruses. Although the pathological relevance of these new viruses is not always clear, several well-studied members of the family Arteriviridae are known to be important animal pathogens. Here, we report the complete genome sequences of four new arterivirus variants, belonging to two putative novel species. These new arteriviruses were discovered in African rodents and were given the names Lopma virus and Praja virus. Their genomes follow the characteristic genome organization of all known arteriviruses, even though they are only distantly related to currently known rodent-borne arteriviruses. Phylogenetic analysis shows that Lopma virus clusters in the subfamily Variarterivirinae, while Praja virus clusters near members of the subfamily Heroarterivirinae: the yet undescribed forest pouched giant rat arterivirus and hedgehog arterivirus 1. A co-divergence analysis of rodent-borne arteriviruses confirms that they share similar phylogenetic patterns with their hosts, with only very few cases of host shifting events throughout their evolutionary history. Overall, the genomes described here and their unique clustering with other arteriviruses further illustrate the existence of multiple rodent-borne arterivirus lineages, expanding our knowledge of the evolutionary origin of these viruses.


Subject(s)
Arteriviridae/genetics , Genome, Viral , RNA Virus Infections/veterinary , Rodent Diseases/virology , Rodentia/virology , Africa South of the Sahara , Animals , Arteriviridae/classification , Arteriviridae/isolation & purification , Biological Evolution , High-Throughput Nucleotide Sequencing , Phylogeny , RNA Virus Infections/virology , Whole Genome Sequencing
4.
Methods Mol Biol ; 1602: 11-28, 2017.
Article in English | MEDLINE | ID: mdl-28508211

ABSTRACT

Development and characterization of several infectious cDNA clones of equine arteritis virus (EAV) have been described in the literature. Here we describe the assembly of the full-length infectious cDNA clone of the virulent Bucyrus strain (VBS; ATCC VR-796) of EAV in a plasmid vector. This system allows generation of infectious in vitro-transcribed (IVT) RNA from the linearized plasmid that can be transfected or electroporated into mammalian cells to produce infectious recombinant progeny virus. This is an efficient reverse genetics system that allows easy manipulation of EAV genomes to study molecular biology of the virus and pathogenesis of equine viral arteritis.


Subject(s)
DNA, Complementary , Equartevirus/genetics , Genome, Viral , Animals , Arterivirus Infections/veterinary , Cell Line , Horse Diseases/virology , Horses , Mutagenesis, Site-Directed , Plasmids/genetics , RNA, Viral , Recombination, Genetic , Transfection , Virus Replication
5.
J Virol Methods ; 222: 66-71, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26028426

ABSTRACT

The objective of the study was to establish a system for isolation of a recently described, thus far uncultured, marsupial nidovirus associated with a neurological disease of possums, termed wobbly possum disease (WPD). Primary cultures of possum macrophages were established from livers of adult Australian brushtail possums (Trichosurus vulpecula). High viral copy numbers (up to 6.9×10(8)/mL of cell lysate) were detected in infected cell culture lysates from up to the 5th passage of the virus, indicating that the putative WPD virus (WPDV) was replicating in cultured cells. A purified virus stock with a density of 1.09 g/mL was prepared using iodixanol density gradient ultracentrifugation. Virus-like particles approximately 60 nm in diameter were observed using electron microscopy in negatively stained preparations of the purified virus. The one-step growth curve of WPDV in macrophage cultures showed the highest increase in intracellular viral RNA between 6 and 12h post-infection. Maximum levels of cell-associated viral RNA were detected at 24h post-infection, followed by a decline. Levels of extracellular RNA increased starting at 9h post-infection, with maximum levels detected at 48 h post-infection. The establishment of the in vitro system to culture WPDV will facilitate further characterisation of this novel nidovirus.


Subject(s)
Macrophages/virology , Nidovirales Infections/veterinary , Nidovirales/growth & development , Nidovirales/isolation & purification , Trichosurus/virology , Virus Cultivation/methods , Animals , Cells, Cultured , Centrifugation, Density Gradient , Microscopy, Electron, Transmission , Nidovirales/ultrastructure , Nidovirales Infections/virology , Virion/ultrastructure
6.
Virology ; 462-463: 388-403, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24913633

ABSTRACT

The advent of recombinant DNA technology, development of infectious cDNA clones of RNA viruses, and reverse genetic technologies have revolutionized how viruses are studied. Genetic manipulation of full-length cDNA clones has become an especially important and widely used tool to study the biology, pathogenesis, and virulence determinants of both positive and negative stranded RNA viruses. The first full-length infectious cDNA clone of equine arteritis virus (EAV) was developed in 1996 and was also the first full-length infectious cDNA clone constructed from a member of the order Nidovirales. This clone was extensively used to characterize the molecular biology of EAV and other Nidoviruses. The objective of this review is to summarize the characterization of the virulence (or attenuation) phenotype of the recombinant viruses derived from several infectious cDNA clones of EAV in horses, as well as their application for characterization of the molecular basis of viral neutralization, persistence, and cellular tropism.


Subject(s)
Cloning, Molecular , DNA, Complementary/genetics , Equartevirus/genetics , Equartevirus/physiology , Animals , Equartevirus/pathogenicity , Horses , Reverse Genetics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL