Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Environ Res ; 243: 117872, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38086502

ABSTRACT

Eutrophication impacts freshwater ecosystems and biodiversity across the world. While temporal monitoring has shown changes in the nutrient inputs in many areas, how spatial and temporal beta diversity change along the eutrophication gradient under a changing context remains unclear. In this regard, analyses based on time series spanning multiple years are particularly scarce. We sampled benthic macroinvertebrates in 32 sites across three lake habitat types (MACROPHYTE, OPEN WATER, PHYTOPLANKTON) along the eutrophication gradient of Lake Taihu in four seasons from 2007 to 2019. Our purpose was to identify the relative contributions of spatial and temporal dissimilarity (i.e., inter-annual dissimilarity and seasonal dissimilarity) to overall benthic biodiversity. We also examined spatio-temporal patterns in community assembly mechanisms and how associated variation in benthic macroinvertebrate communities responded to nutrient indicators. Results showed that eutrophication caused macroinvertebrate community homogenization both along spatial and temporal gradients. Though spatial variability dominated the variation of species richness, abundance and community dissimilarity, seasons within years dissimilarity, inter-annual dissimilarity and seasonal dissimilarity were much more sensitive to eutrophication. Moreover, eutrophication inhibited a strong environmental control in benthic macroinvertebrate community assembly, including a dominant role of deterministic process in the spatial variation of macroinvertebrate communities and transition from stochastic to deterministic process in the temporal assembly of macroinvertebrate communities along the eutrophication gradient. In addition, some sites in PHYTOPLANKTON habitats showed similar spatial dissimilarity and spatial SES as sites in MACROPHYTE habitats, and the decreased spatial dissimilarity of three habitats implying that lake ecosystem recovery projects have achieved their goal at least to a certain degree.


Subject(s)
Ecosystem , Lakes , Environmental Monitoring , Biodiversity , Phytoplankton , Eutrophication , China
2.
J Environ Manage ; 356: 120664, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508006

ABSTRACT

Continuous discharge of wastewater, emissions, and solid wastes from steelworks poses environmental risks to ecosystems. However, the role of keystone taxa in maintaining multifunctional stability during environmental disturbances remains poorly understood. To address this, we investigated the community diversity, assembly mechanisms, and soil multifunctionality of soils collected from within the steelworks (I), within 2.5 km radius from the steelworks (E), and from an undisturbed area (CK) in Jiangsu Province, China, via 16 S rRNA sequencing. Significant differences were found in the Chao1 and the richness indexes of the total taxa (p < 0.05), while the diversity of keystone taxa was not significant at each site (p > 0.05). The deterministic processes for total taxa were 42.9%, 61.9% and 47.7% in CK, E, and I, respectively. Steelworks stress increased the deterministicity of keystone taxa from 52.3% in CK to 61.9% in E and I soils. The average multifunctionality indices were 0.518, 0.506 and 0.513 for CK, E and I, respectively. Although the soil multifunctionality was positive correlated with α diversity of both the total and keystone taxa, the average degree of keystone taxa in functional network increased significantly (79.96 and 65.58, respectively), while the average degree of total taxa decreased (44.59 and 51.25, respectively) in the E and I. This suggests keystone taxa contribute to promoting the stability of ecosystems. With increasing disturbance, keystone taxa shift their function from basic metabolism (ribosome biogenesis) to detoxification (xenobiotics biodegradation, metabolism, and benzoate degradation). Here we show that keystone taxa are the most important factor in maintaining stable microbial communities and functions, providing new insights for mitigating pollution stress and soil health protection.


Subject(s)
Microbiota , Soil , Soil Microbiology , Bacteria/genetics , Environmental Pollution
3.
J Environ Manage ; 368: 122131, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121627

ABSTRACT

Human-induced global alterations have worsened the severe decrease in fish biodiversity in rivers. To successfully reduce the pace of reduction in fish diversity, it is crucial to prioritize the understanding of how human activities impact the processes that shape and maintain fish diversity. Traditional fish survey methods are based on catch collection and morphological identification, which is often time-consuming and ineffective. Hence, these methods are inadequate for conducting thorough and detailed large-scale surveys of fish ecology. The rapid progress in molecular biology techniques has transformed environmental DNA (eDNA) technique into a highly promising method for studying fish ecology. In this work, we conducted the first systematic study of fish diversity and its formation and maintenance mechanism in the Xishuangbanna section of the Lancang River using eDNA metabarcoding. The eDNA metabarcoding detected a total of 159 species of freshwater fishes spanning 13 orders, 34 families, and 99 genera. The fishes in the order cypriniformes were shown to be overwhelmingly dominant. At different intensities of anthropogenic activity, we found differences in fish community composition and assembly. The analysis of the Sloan's neutral community model fitting revealed that stochastic processes were the dominant factor in the shaping of fish communities in the Xishuangbanna section of the Lancang River. We have further confirmed this result by using the phylogenetic normalized stochasticity ratio. Furthermore, our findings indicate that as human activities get more intense, the influence of stochastic processes on the shaping of fish communities decreases, while the influence of deterministic processes eventually becomes more prominent. Finally, we discovered that salinity positively correlated with fish community changes in the high-intensity anthropogenic sample sites, but all environmental factors had little effect on fish community changes in the low-intensity and moderate-intensity anthropogenic sample sites. Our study not only validated the potential application of eDNA metabarcoding for monitoring fish diversity in tropical rivers, but also revealed how fish communities respond to human activities. This knowledge will serve as a solid foundation for the protection of fish resources in tropical rivers.


Subject(s)
Biodiversity , Fishes , Human Activities , Rivers , Animals , China , Fishes/genetics , Humans , Phylogeny , DNA Barcoding, Taxonomic , DNA, Environmental
4.
Glob Chang Biol ; 29(19): 5615-5633, 2023 10.
Article in English | MEDLINE | ID: mdl-37548955

ABSTRACT

Agriculture is the most dominant land use globally and is projected to increase in the future to support a growing human population but also threatens ecosystem structure and services. Bacteria mediate numerous biogeochemical pathways within ecosystems. Therefore, identifying linkages between stressors associated with agricultural land use and responses of bacterial diversity is an important step in understanding and improving resource management. Here, we use the Mississippi Alluvial Plain (MAP) ecoregion, a highly modified agroecosystem, as a case study to better understand agriculturally associated drivers of stream bacterial diversity and assembly mechanisms. In the MAP, we found that planktonic bacterial communities were strongly influenced by salinity. Tolerant taxa increased with increasing ion concentrations, likely driving homogenous selection which accounted for ~90% of assembly processes. Sediment bacterial phylogenetic diversity increased with increasing agricultural land use and was influenced by sediment particle size, with assembly mechanisms shifting from homogenous to variable selection as differences in median particle size increased. Within individual streams, sediment heterogeneity was correlated with bacterial diversity and a subsidy-stress relationship along the particle size gradient was observed. Planktonic and sediment communities within the same stream also diverged as sediment particle size decreased. Nutrients including carbon, nitrogen, and phosphorus, which tend to be elevated in agroecosystems, were also associated with detectable shifts in bacterial community structure. Collectively, our results establish that two understudied variables, salinity and sediment texture, are the primary drivers of bacterial diversity within the studied agroecosystem, whereas nutrients are secondary drivers. Although numerous macrobiological communities respond negatively, we observed increasing bacterial diversity in response to agricultural stressors including salinization and sedimentation. Elevated taxonomic and phylogenetic bacterial diversity likely increases the probability of detecting community responses to stressors. Thus, bacteria community responses may be more reliable for establishing water quality goals within highly modified agroecosystems that have experienced shifting baselines.


Subject(s)
Ecosystem , Rivers , Humans , Rivers/microbiology , Plankton , Phylogeny , Bacteria , Agriculture , Geologic Sediments
5.
J Environ Sci (China) ; 102: 11-23, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33637236

ABSTRACT

Rapid urbanization has resulted in pervasive occurrence of antibiotic resistance genes (ARGs) in urban aquatic ecosystems. However, limited information is available concerning the ARG profiles and the forces responsible for their assembly in urban landscape lagoon systems. Here, we employed high-throughput quantitative PCR (HT-qPCR) to characterize the spatial variations of ARGs in surface and core sediments of Yundang Lagoon, China. The results indicated that the average richness and absolute abundance of ARGs were 11 and 53 times higher in the lagoon sediments as compared to pristine reference Tibetan lake sediments, highlighting the role of anthropogenic activities in ARG pollution. Co-occurrence network analysis indicated that various anaerobic prokaryotic genera belonging to Alpha-, Deltaproteobacteria, Bacteroidetes, Euryarchaeota, Firmicutes and Synergistetes were the potential hosts of ARGs. The partial least squares-path modeling (PLS-PM) analysis revealed positive and negative indirect effects of physicochemical factors and heavy metals on the lagoon ARG profiles, via biotic factors, respectively. The horizontal (mediated by mobile genetic elements) and vertical (mediated by prokaryotic communities) gene transfer may directly contribute the most to drive the abundance and composition of ARGs, respectively. Furthermore, the neutral community model demonstrated that the assembly of sediment ARG communities was jointly governed by deterministic and stochastic processes. Overall, this study provides novel insights into the diversity and distribution of ARGs in the benthic habitat of urban lagoon systems and underlying mechanisms for the spread and proliferation of ARGs.


Subject(s)
Anti-Bacterial Agents , Ecosystem , Anti-Bacterial Agents/pharmacology , China , Drug Resistance, Microbial/genetics , Genes, Bacterial
6.
Environ Microbiome ; 19(1): 6, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38229154

ABSTRACT

BACKGROUND: Beneficial root-associated microbiomes play crucial roles in enhancing plant growth and suppressing pathogenic threats, and their application for defending against pathogens has garnered increasing attention. Nonetheless, the dynamics of microbiome assembly and defense mechanisms during pathogen invasion remain largely unknown. In this study, we aimed to investigate the diversity and assembly of microbial communities within four niches (bulk soils, rhizosphere, rhizoplane, and endosphere) under the influence of the bacterial plant pathogen Ralstonia solanacearum. RESULTS: Our results revealed that healthy tobacco plants exhibited more diverse community compositions and more robust co-occurrence networks in root-associated niches compared to diseased tobacco plants. Stochastic processes (dispersal limitation and drift), rather than determinism, dominated the assembly processes, with a higher impact of drift observed in diseased plants than in healthy ones. Furthermore, during the invasion of R. solanacearum, the abundance of Fusarium genera, a known potential pathogen of Fusarium wilt, significantly increased in diseased plants. Moreover, the response strategies of the microbiomes to pathogens in diseased and healthy plants diverged. Diseased microbiomes recruited beneficial microbial taxa, such as Streptomyces and Bacilli, to mount defenses against pathogens, with an increased presence of microbial taxa negatively correlated with the pathogen. Conversely, the potential defense strategies varied across niches in healthy plants, with significant enrichments of functional genes related to biofilm formation in the rhizoplane and antibiotic biosynthesis in the endosphere. CONCLUSION: Our study revealed the varied community composition and assembly mechanism of microbial communities between healthy and diseased tobacco plants along the soil-root continuum, providing new insights into niche-specific defense mechanisms against pathogen invasions. These findings may underscore the potential utilization of different functional prebiotics to enhance plants' ability to fend off pathogens.

7.
J Hazard Mater ; 480: 136378, 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39500185

ABSTRACT

Recently, concerns have been raised regarding concurrent pollution by microplastics and antibiotics in agricultural aquatic ecosystems. However, knowledge gaps remain regarding their combined effects on greenhouse gas (GHG) emissions and bacterial community assembly mechanisms. To address this, a microcosm experiment was performed to investigate the GHG (CH4, CO2, and N2O) emission characteristics and bacterial community assembly mechanisms in agricultural ditch sediments under co-exposure to different microplastics (polythene (PE), polylactic acid (PLA)), and sulfanilamide (SA). The global warming potential (GWP) of the different treatments was ranked as follows: SA+PLA (162.96 mg/m2/h) > PLA (123.49 mg/m2/h) > SA (121.75 mg/m2/h) > SA+PE (102.33 mg/m2/h) > CK (without microplastics or antibiotics, 84.67 mg/m2/h) > PE (78.29 mg/m2/h). Additionally, a phylogenetic bin-based null model and molecular ecological network analysis indicated that SA-induced selective pressures reduced compositional turnover, whereas microplastics enhanced drift effects and decreased network robustness. The co-contamination of SA with different microplastics exhibited the opposite effect on the network and assembly process, suggesting that disturbance-mediated species dominance alters the colonization of rare species. Collectively, these findings provide valuable evidence that the synergistic effects of biodegradable microplastic and SA can promote GHG emissions and influence the mechanisms underlying community assembly processes.

8.
Insects ; 15(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667360

ABSTRACT

Mountain ecosystems harbor evolutionarily unique and exceptionally rich biodiversity, particularly in insects. In this study, we characterized the diversity, community stability, and assembly mechanisms of butterflies on a subtropical mountain in the Chebaling National Nature Reserve, Guangdong Province, China, using grid-based monitoring across the entire region for two years. The results showed that species richness, abundance, and Faith's phylogenetic diversity decreased with increasing elevation; taxonomic diversity played a considerable role in mediating the effects of environmental changes on stability. Moreover, our results showed that stochastic processes are dominant in governing the assembly of butterfly communities across all elevational gradients, with habitats at an elevation of 416-580 m subjected to the strongest stochastic processes, whereas heterogeneous selection processes displayed stronger effects on the assembly of butterfly communities at 744-908 m, 580-744 m, and 908-1072 m, with abiotic factors inferred as the main driving forces. In addition, significant differences were detected between the barcode tree and the placement tree for the calculated ß-NTI values at 416-580 m. Overall, this study provides new insights into the effects of environmental change on the stability and assembly of butterflies in Chebaling, which will be beneficial for biodiversity conservation and policy development.

9.
Polymers (Basel) ; 16(19)2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39408447

ABSTRACT

Poly(p-dioxanone) (PPDO) is crystallized with amorphous poly(p-vinyl phenol) (PVPh) and tannic acid (TA) as co-diluents to regulate and induce dendritic-ringed PPDO spherulites, with spoke- or sector-bands, aiming for convenience of analyses on interior lamellar assembly. Morphologies and interior lamellar arrangement leading to the peculiar rings on individual dendrites are evaluated by using polarized-light microscopy (PLM) and scanning electron microscope (SEM). Combinatory microbeam small-/wide-angle X-ray scattering (SAXS/WAXS) analyses further confirm the unique assembly patterns in periodic cycles. Alternate gratings are packed with periodic ridges composed of feather-like branches and the valley is featured with some embossed textures. The periodic gratings in the ringed spokes resemble those in nature's structured coloration and are proven to display light-interference iridescence.

10.
Water Res ; 256: 121559, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38579508

ABSTRACT

Over the last six decades, northwest China has undergone a significant climatic shift from "warm-dry" to "warm-wet", profoundly impacting the structures and functions of lake ecosystem across the region. However, the influences of this climatic transition on the diversity patterns, co-occurrence network, and assembly processes of eukaryotic microbial communities in lake ecosystem, along with the underlying mechanisms, remain largely unexplored. To bridge this knowledge gap, our study focused on Lake Bosten, the largest inland freshwater body in China, conducting a comprehensive analysis. Firstly, we examined the dynamics of key water quality parameters in the lake based on long-term monitoring data (1992-2022). Subsequently, we collected 93 water samples spanning two distinctive periods: low water level (WL) and high total dissolved solids (TDS) (PerWLTDS; 2010-2011; attributed to "warm-dry" climate), and high WL and low TDS (PerTDSWL; 2021-2022; associated with "warm-wet" climate). Eukaryotic microorganisms were further investigated using 18S rRNA gene sequencing and various statistical methods. Our findings revealed that climatic warming and wetting significantly increased eukaryotic microbial α-diversity (all Wilcox. test: P<0.05), while simultaneously reducing ß-diversity (all Wilcox. test: P<0.001) and network complexity. Through the two sampling periods, assembly mechanisms of eukaryotic microorganisms were predominantly influenced by dispersal limitation (DL) and drift (DR) within stochastic processes, alongside homogeneous selection (HoS) within deterministic processes. WL played a mediating role in eukaryotic microbial DL and HoS processes in the PerTDSWL, whereas water quality and α-diversity influenced the DL process in the PerWLTDS. Collectively, these results underscore the direct and indirect impacts of "warm-wet" conditions on the eukaryotic microorganisms within Lake Bosten. This study provides valuable insights into the evolutionary dynamics of lake ecosystems under such climatic conditions and aids in predicting the ecological ramifications of global climatic changes.


Subject(s)
Lakes , Lakes/microbiology , China , Biodiversity , Climate Change , Ecosystem , Eukaryota/genetics , RNA, Ribosomal, 18S/genetics
11.
Protein Sci ; 33(2): e4896, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38284489

ABSTRACT

Diderm bacteria employ ß-barrel outer membrane proteins (OMPs) as their first line of communication with their environment. These OMPs are assembled efficiently in the asymmetric outer membrane by the ß-Barrel Assembly Machinery (BAM). The multi-subunit BAM complex comprises the transmembrane OMP BamA as its functional subunit, with associated lipoproteins (e.g., BamB/C/D/E/F, RmpM) varying across phyla and performing different regulatory roles. The ability of BAM complex to recognize and fold OM ß-barrels of diverse sizes, and reproducibly execute their membrane insertion, is independent of electrochemical energy. Recent atomic structures, which captured BAM-substrate complexes, show the assembly function of BamA can be tailored, with different substrate types exhibiting different folding mechanisms. Here, we highlight common and unique features of its interactome. We discuss how this conserved protein complex has evolved the ability to effectively achieve the directed assembly of diverse OMPs of wide-ranging sizes (8-36 ß-stranded monomers). Additionally, we discuss how darobactin-the first natural membrane protein inhibitor of Gram-negative bacteria identified in over five decades-selectively targets and specifically inhibits BamA. We conclude by deliberating how a detailed deduction of BAM complex-associated regulation of OMP biogenesis and OM remodeling will open avenues for the identification and development of effective next-generation therapeutics against Gram-negative pathogens.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/chemistry , Escherichia coli/metabolism , Bacterial Outer Membrane/metabolism , Bacterial Outer Membrane Proteins/chemistry , Adenosine Triphosphate/metabolism , Protein Folding
12.
Sci Total Environ ; 948: 174822, 2024 Oct 20.
Article in English | MEDLINE | ID: mdl-39029748

ABSTRACT

Microorganisms play a pivotal role as catalysts in the biogeochemical cycles of aquatic ecosystems within coal mining subsidence areas. Despite their importance, the succession of microbial communities with increasing mine age, particularly across different habitats, and variations in phylogenetically-based community assembly mechanisms are not well understood. To address this knowledge gap, we collected 72 samples from lake sediments, water, and surrounding topsoil (0-20 cm) at various mining stages (early: 16 years, middle: 31 years, late: 40 years). We analyzed these samples using 16S rRNA gene sequencing and multivariate statistical methods to explore the dynamics and assembly mechanisms of bacterial communities. Our findings reveal that increases in phosphorus and organic matter in sediments, correlating with mining age, significantly enhance bacterial alpha diversity while reducing species richness (P < 0.001). Homogenizing selection (49.9 %) promotes species asynchrony-complementarity, augmenting the bacterial community's ability to metabolize sulfur, phosphorus, and organic matter, resulting in more complex-stable co-occurrence networks. In soil, elevated nitrogen and organic carbon levels markedly influence bacterial community composition (Adonis R2 = 0.761), yet do not significantly alter richness or diversity (P > 0.05). The lake's high connectivity with surrounding soil leads to substantial species drift and organic matter accumulation, thereby increasing bacterial richness in later stages (P < 0.05) and enhancing the ability to metabolize dissolved organic matter, including humic-like substances, fulvic acids, and protein-like materials. The assembly of soil bacterial communities is largely governed by stochastic processes (79.0 %) with species drift (35.8 %) significantly shaping these communities over a broad spatial scale, also affecting water bacterial communities. However, water bacterial community assembly is primarily driven by stochastic processes (51.2 %), with a substantial influence from habitat quality (47.6 %). This study offers comprehensive insights into the evolution of microbial community diversity within coal mining subsidence water areas, with significant implications for enhancing environmental management and protection strategies for these ecosystems.


Subject(s)
Bacteria , Coal Mining , Microbiota , Bacteria/classification , RNA, Ribosomal, 16S , Lakes/microbiology , Ecosystem , Water Microbiology , Biodiversity , Soil Microbiology , Environmental Monitoring , Phosphorus/analysis , Geologic Sediments/microbiology
13.
Polymers (Basel) ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37688167

ABSTRACT

Designing anisotropic lignin-based particles and promoting the high-value utilization of lignin have nowadays drawn much attention from scientists. However, systematic studies addressing the self-assembly mechanisms of anisotropic lignin-based particles are scarce. In this work, an interaction including the electrostatic forces and chelating forces between lignin and Ag+ was regulated via carboxymethylation modification. Subsequently, the aggregation morphology of carboxymethylated lignin in a Ag+ solution was observed via SEM. The result showed that a large number of Ag+ intercalated into the lignin molecules when the grafting degree of the carboxyl groups increased from 0.17 mmol/g to 0.53 mmol/g, which caused the lignin molecules to gradually transform from disordered blocks to ordered layers. Dynamics research indicated that the adsorption process of Ag+ in carboxymethylated lignin conforms to the Pseudo-first-order kinetic model. The saturated adsorption amount of Ag+ in the carboxymethylated lignin reached 1981.7 mg/g when the grafting rate of carboxyl groups increased to 0.53 mmol/g, which then fully intercalated into lignin molecules and formed a layered structure. The thermodynamic parameters showed that the thermal adsorption process conforms to the Langmuir model, which indicates that Ag+ is monolayer-adsorbed and intercalated into lignin molecules. Meanwhile, the ΔH values are more than 0, which suggests that this adsorption process is a endothermic reaction and that a higher temperature is conducive to an adsorption reaction. Therefore, self-assembly of lignin in a Ag+ solution under 70 °C is more conducive to the formation of a nanoflower structure, which is consistent with our experimental result. Finally, pH-responsive Pickering emulsions were successfully prepared using a lignin-based nanoflowers, which demonstrated their potential as a catalytic platform in the interface catalysis field. This work offers a deeper understanding into the formation mechanism of anisotropic lignin-based nanoflowers and hopes to be helpful for designing and preparing anisotropic lignin-based particles.

14.
Environ Microbiome ; 18(1): 77, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872593

ABSTRACT

BACKGROUND: Coral reefs are one of the most biodiverse and productive ecosystems, providing habitat for a vast of species. Reef-building scleractinian corals with a symbiotic microbiome, including bacteria, archaea, viruses and eukaryotic microbes, are referred to coral holobionts. Among them, coral diseases, mainly caused by Vibrio spp., have significantly contributed to the loss of coral cover and diversity. Habitat filtering across the globe has led to a variety structure of marine bacterial communities. Coral species, quantity and characteristics are significant differences between the Xisha Islands and Daya Bay (Guangdong Province). Thus, the Vibrio communities may be distinct between coral rich and poor areas. RESULTS: Through comparison of Vibrio dynamics between coral-rich (Xisha Islands) and coral-poor (Daya Bay) locations, we uncovered differences in Vibrio abundance, diversity, community composition and assembly mechanisms associated with corals. The higher abundance of Vibrio in coral rich areas may indicate a strong interaction between vibrios and corals. V. campbellii, Paraphotobacterium marinum and V. caribbeanicus were widely distributed in both coral rich and poor areas, likely indicating weak species specificity in the coral-stimulated growth of Vibrio. Random-forest prediction revealed Vibrio species and Photobacterium species as potential microbial indicators in the coral rich and coral poor areas, respectively. Ecological drift rather than selection governed the Vibrio community assembly in the Xisha Islands. Comparatively, homogenizing selection was more important for the Daya Bay community, which may reflect a role of habitat filtration. CONCLUSION: This study revealed the different distribution pattern and assembly mechanism of Vibrio spp. between coral rich and poor areas, providing the background data for the research of Vibrio community in coral reef areas and may help the protection of coral reef at the biological level. The main reasons for the difference were different number and species of corals, environmental (e.g., temperature) and spatial factors. It reflected the strong interaction between Vibrio and corals, and provided a new perspective for the investigation of Vibrio in coral reef ecosystem.

15.
Sci Total Environ ; 905: 167027, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717779

ABSTRACT

Microbial communities play a vital role in urban river biogeochemical cycles. However, the seasonal variations in microbial community characteristics, particularly phylogenetic group-based community assembly and species coexistence, have not been extensively investigated. Here, we systematically explored the microbiome characteristics and assembly mechanisms of urban rivers in different seasons using 16S rRNA gene sequencing and multivariate statistical methods. The results indicated that the microbial community presented significant temporal heterogeneity in different seasons, and the diversity decreased from spring to winter. The phylogenetic group-based microbial community assembly was governed by dispersal limitation and drift in spring, summer, and autumn but was structured by homogeneous selection in winter. Moreover, the main functions of nitrification, denitrification, and methanol oxidation were susceptible to dispersal limitation and drift processes, whereas sulfate respiration and aromatic compound degradation were controlled by dispersal limitation and homogeneous selection. Network analyses indicated that network complexity decreased and then increased with seasonal changes, while network stability showed the opposite trend, suggesting that higher complexity and diversity reduced community stability. Temperature was determined to be the primary driver of microbial community structure and assembly processes in different seasons based on canonical correspondence analysis and linear regression analysis. In conclusion, seasonal variation drives the dynamics of microbial community assembly and species coexistence patterns in urban rivers. This study provides new insights into the generation and maintenance of microbial community diversity in urban rivers under seasonal change conditions.


Subject(s)
Microbiota , Rivers , Seasons , Phylogeny , RNA, Ribosomal, 16S/genetics
16.
Sci Total Environ ; 897: 166190, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37567310

ABSTRACT

Coastal wetlands are undergoing substantial transformations globally as a result of increased human activities. However, compared to other ecosystems, diversity and functional characteristics of microbial communities in reclaimed coastal wetlands are not well studied compared to other ecosystems. This is important because it is known that microorganisms can play a crucial role in biogeochemical cycling within coastal wetland ecosystems. Hence, this study utilized the high-throughput sequencing technique to investigate the structure and assembly processes of microbial communities in reclaimed coastal wetlands. The results revealed a substantial change in soil properties following coastal wetland reclamation. Remarkably, the reclaimed soil exhibited significantly lower pH, soil organic carbon (SOC), and total salinity (TS) values (p < 0.05). The dominant phyla included Proteobacteria, Chloroflexi, Bacteroidetes, Acidobacteria, and Planctomycetes among study sites. However, the relative abundance of Proteobacteria increased from un-reclaimed coastal wetlands to reclaimed ones. The Proteobacteria, Chloroflexi, and Acidobacteria showed higher relative abundance in vegetated soil compared to bare soil, while Bacteroidetes and Planctomycetes exhibited the opposite trend. Notably, vegetation types exerted the strongest influence on microbial diversity, surpassing the effects of soil types and depth (F = 34.49, p < 0.001; F = 25.49, p < 0.001; F = 3.173, p < 0.078, respectively). Stochastic assembly processes dominated in un-reclaimed soil, whereas deterministic processes governed the assembly in artificial sea embankment wetlands (SEW). The presence of Spartina alterniflora in all soil types (except SEW soils) indicated stochastic assembly, while Phragmites australis in reclaimed soils pointed toward deterministic microbial assembly. Furthermore, environmental factors such as pH, soil water content (SWC), SOC, total carbon (TC), total nitrogen (TN), total phosphorus (TP), NH4+-N, vegetation types, soil depth, and geographic distance exhibited significant effects on microbial beta diversity indices. Co-occurrence network analysis revealed a stronger association between taxa in SEW compared to land reclaimed from wetlands (LRW) and natural coastal wetlands (NCW). The bottom soil layer exhibited more complex network interactions than the topsoil layer. Besides soil parameters, reclamation and varieties of vegetation were also substantial factors influencing the composition, diversity, and assembly processes of microbial communities in coastal wetlands.


Subject(s)
Ecosystem , Wetlands , Humans , Soil/chemistry , Carbon/analysis , Poaceae , Proteobacteria , Acidobacteria , Bacteroidetes , China
17.
Polymers (Basel) ; 15(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36679273

ABSTRACT

The exterior and interior lamellar assemblies of poly(p-dioxanone) (PPDO) crystallized at 76 °C yield the most regular ones to interpret the 3D assembly mechanisms and potential for structural coloration iridescence, which are investigated using atomic-force microscopy (AFM), and scanning electron microscopy (SEM). PPDO displays two types of ring-banded spherulites within a range of Tc with dual-type birefringent spherulites (positive and negative-type) only within a narrow range of Tcs = 70−78 °C. At Tc > 80 °C, the inter-band spacing decreases from a maximum and the crystal assembly becomes irregularly corrupted and loses the capacity for light interference. Periodic grating assemblies are probed by in-depth 3D dissection into periodically banded crystal aggregates of poly(p-dioxanone) (PPDO) to disclose such layered gratings possessing iridescence features similar to nature's structural coloration. This work amply demonstrates that grating assembly by orderly stacked crystal layers is feasible not only for accounting for the periodic birefringent ring bands with polarized light but also the distinct iridescence by interfering with white light.

18.
mLife ; 2(3): 239-252, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38817815

ABSTRACT

Disentangling the assembly mechanisms controlling community composition, structure, distribution, functions, and dynamics is a central issue in ecology. Although various approaches have been proposed to examine community assembly mechanisms, quantitative characterization is challenging, particularly in microbial ecology. Here, we present a novel approach for quantitatively delineating community assembly mechanisms by combining the consumer-resource model with a neutral model in stochastic differential equations. Using time-series data from anaerobic bioreactors that target microbial 16S rRNA genes, we tested the applicability of three ecological models: the consumer-resource model, the neutral model, and the combined model. Our results revealed that model performances varied substantially as a function of population abundance and/or process conditions. The combined model performed best for abundant taxa in the treatment bioreactors where process conditions were manipulated. In contrast, the neutral model showed the best performance for rare taxa. Our analysis further indicated that immigration rates decreased with taxa abundance and competitions between taxa were strongly correlated with phylogeny, but within a certain phylogenetic distance only. The determinism underlying taxa and community dynamics were quantitatively assessed, showing greater determinism in the treatment bioreactors that aligned with the subsequent abnormal system functioning. Given its mechanistic basis, the framework developed here is expected to be potentially applicable beyond microbial ecology.

19.
Food Chem ; 425: 136506, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37290236

ABSTRACT

This study examined how the self-assembly mechanisms of ß-sitosterol-based oleogels influenced the release of volatile compounds. Microscopy, X-ray diffraction (XRD) and small-angle X-ray scattering (SAXS) measurements showed that the three ß-sitosterol-based oleogels (ß-sitosterol + Î³-oryzanol oleogels (SO), ß-sitosterol + lecithin oleogels (SL) and ß-sitosterol + monostearate oleogels (SM)) had significant differences in their microstructures, which were formed via different self-assembly mechanisms. SO exhibited the highest oil binding capacity (OBC), complex modulus (G*) and apparent viscosity. Dynamic and static headspace analyses suggested that network structure of ß-sitosterol-based oleogels affected the release of volatile components. SO showed the strongest retention effect, followed by SL and SM. The release of volatile compounds mainly related to structural strength and compositions of oleogels. These results indicated that ß-sitosterol-based oleogels formed with different self-assembly mechanisms have the potential to serve as effective delivery systems for controlling the release of volatile compounds.


Subject(s)
Sitosterols , Scattering, Small Angle , X-Ray Diffraction , Sitosterols/chemistry
20.
Sci Total Environ ; 814: 152862, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35016938

ABSTRACT

Picoeukaryotic communities respond rapidly to global climate change and play an important role in marine biological food webs and ecosystems. The formation of oxygen minimum zones (OMZ) is facilitated by the stratification of seawater and higher primary production in the surface layer, and the marine picoeukaryotic community this low-oxygen environment is topic of interest. To better understand the picoeukaryotic community assembly mechanisms in an OMZ, we collected samples from the Bay of Bengal (BOB) in October and November 2020 and used 18S rDNA to study the picoeukaryotic communities and their community assembly mechanisms that they are controlled by in deep-sea and hypoxic zones. The results show that deterministic and stochastic processes combine to shape picoeukaryotic communities in the BOB. We divided the water column into three vertical layers: the upper oxycline (UO), the OMZ, and the lower oxycline (LO), based on dissolved oxygen concentrations (dissolved oxygen: UO > LO > OMZ) at vertical depths (from 5 m to 2000 m). Deterministic processes controlled the picoeukaryotic community in the UO, while the picoeukaryotic communities in the OMZ and LO were dominated by stochastic processes. The OMZ had a stronger diffusional limitation and the habitat niche breadth in the UO was wider than that in OMZ and LO. We classified the picoeukaryotic community into three functional composition types (phototrophic, mixotrophic, and heterotrophic); heterotrophs were most abundant in the surveyed area, and the proportion of decreased significantly with increasing depth and decreasing dissolved oxygen. The picoeukaryotes in the investigated area also correlated with temperature, salinity, and nutrients (phosphate, silicate, nitrate, nitrite, and ammonium). These findings contribute to a better understanding of picoeukaryotic communities in deep-sea and low-oxygen environments, their functional structuring, as well as the effects of environmental changes on their community structure.


Subject(s)
Ecosystem , Oxygen , Bacteria , Bays , Oxygen/analysis , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL