Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.367
Filter
Add more filters

Publication year range
1.
Cell ; 183(4): 918-934.e49, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33113354

ABSTRACT

Learning valence-based responses to favorable and unfavorable options requires judgments of the relative value of the options, a process necessary for species survival. We found, using engineered mice, that circuit connectivity and function of the striosome compartment of the striatum are critical for this type of learning. Calcium imaging during valence-based learning exhibited a selective correlation between learning and striosomal but not matrix signals. This striosomal activity encoded discrimination learning and was correlated with task engagement, which, in turn, could be regulated by chemogenetic excitation and inhibition. Striosomal function during discrimination learning was disturbed with aging and severely so in a mouse model of Huntington's disease. Anatomical and functional connectivity of parvalbumin-positive, putative fast-spiking interneurons (FSIs) to striatal projection neurons was enhanced in striosomes compared with matrix in mice that learned. Computational modeling of these findings suggests that FSIs can modulate the striosomal signal-to-noise ratio, crucial for discrimination and learning.


Subject(s)
Aging/pathology , Corpus Striatum/pathology , Huntington Disease/pathology , Learning , Action Potentials , Animals , Behavior, Animal , Biomarkers/metabolism , Corpus Striatum/physiopathology , Discrimination Learning , Disease Models, Animal , Huntington Disease/physiopathology , Interneurons/pathology , Mice, Transgenic , Models, Neurological , Nerve Net/physiopathology , Parvalbumins/metabolism , Photometry , Reward , Task Performance and Analysis
2.
Cell ; 183(1): 211-227.e20, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937106

ABSTRACT

The striosome compartment within the dorsal striatum has been implicated in reinforcement learning and regulation of motivation, but how striosomal neurons contribute to these functions remains elusive. Here, we show that a genetically identified striosomal population, which expresses the Teashirt family zinc finger 1 (Tshz1) and belongs to the direct pathway, drives negative reinforcement and is essential for aversive learning in mice. Contrasting a "conventional" striosomal direct pathway, the Tshz1 neurons cause aversion, movement suppression, and negative reinforcement once activated, and they receive a distinct set of synaptic inputs. These neurons are predominantly excited by punishment rather than reward and represent the anticipation of punishment or the motivation for avoidance. Furthermore, inhibiting these neurons impairs punishment-based learning without affecting reward learning or movement. These results establish a major role of striosomal neurons in behaviors reinforced by punishment and moreover uncover functions of the direct pathway unaccounted for in classic models.


Subject(s)
Avoidance Learning/physiology , Corpus Striatum/physiology , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Animals , Basal Ganglia , Female , Homeodomain Proteins/metabolism , Learning/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motivation , Neurons/physiology , Punishment , Reinforcement, Psychology , Repressor Proteins/metabolism
3.
Cell ; 180(5): 833-846.e16, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142677

ABSTRACT

Cognitive dysfunction and reactive microglia are hallmarks of traumatic brain injury (TBI), yet whether these cells contribute to cognitive deficits and secondary inflammatory pathology remains poorly understood. Here, we show that removal of microglia from the mouse brain has little effect on the outcome of TBI, but inducing the turnover of these cells through either pharmacologic or genetic approaches can yield a neuroprotective microglial phenotype that profoundly aids recovery. The beneficial effects of these repopulating microglia are critically dependent on interleukin-6 (IL-6) trans-signaling via the soluble IL-6 receptor (IL-6R) and robustly support adult neurogenesis, specifically by augmenting the survival of newborn neurons that directly support cognitive function. We conclude that microglia in the mammalian brain can be manipulated to adopt a neuroprotective and pro-regenerative phenotype that can aid repair and alleviate the cognitive deficits arising from brain injury.


Subject(s)
Brain Injuries, Traumatic/therapy , Interleukin-6/genetics , Receptors, Interleukin-6/genetics , Regeneration/genetics , Animals , Brain/growth & development , Brain/pathology , Brain Injuries, Traumatic/genetics , Brain Injuries, Traumatic/pathology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Cognitive Dysfunction/therapy , Disease Models, Animal , Humans , Inflammation/genetics , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/therapeutic use , Signal Transduction/genetics
4.
Annu Rev Cell Dev Biol ; 34: 471-493, 2018 10 06.
Article in English | MEDLINE | ID: mdl-30296392

ABSTRACT

The ability of neurites of individual neurons to distinguish between themselves and neurites from other neurons and to avoid self (self-avoidance) plays a key role in neural circuit assembly in both invertebrates and vertebrates. Similarly, when individual neurons of the same type project into receptive fields of the brain, they must avoid each other to maximize target coverage (tiling). Counterintuitively, these processes are driven by highly specific homophilic interactions between cell surface proteins that lead to neurite repulsion rather than adhesion. Among these proteins in vertebrates are the clustered protocadherins (Pcdhs), and key to their function is the generation of enormous cell surface structural diversity. Here we review recent advances in understanding how a Pcdh cell surface code is generated by stochastic promoter choice; how this code is amplified and read by homophilic interactions between Pcdh complexes at the surface of neurons; and, finally, how the Pcdh code is translated to cellular function, which mediates self-avoidance and tiling and thus plays a central role in the development of complex neural circuits. Not surprisingly, Pcdh mutations that diminish homophilic interactions lead to wiring defects and abnormal behavior in mice, and sequence variants in the Pcdh gene cluster are associated with autism spectrum disorders in family-based genetic studies in humans.


Subject(s)
Cadherins/genetics , Cell Communication/genetics , Neurons/cytology , Receptors, Cell Surface/genetics , Animals , Brain/growth & development , Brain/metabolism , Cell Adhesion/genetics , Humans , Neurites/metabolism , Neurons/metabolism , Protein Isoforms/genetics
5.
Mol Cell ; 83(11): 1936-1952.e7, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267908

ABSTRACT

Non-native conformations drive protein-misfolding diseases, complicate bioengineering efforts, and fuel molecular evolution. No current experimental technique is well suited for elucidating them and their phenotypic effects. Especially intractable are the transient conformations populated by intrinsically disordered proteins. We describe an approach to systematically discover, stabilize, and purify native and non-native conformations, generated in vitro or in vivo, and directly link conformations to molecular, organismal, or evolutionary phenotypes. This approach involves high-throughput disulfide scanning (HTDS) of the entire protein. To reveal which disulfides trap which chromatographically resolvable conformers, we devised a deep-sequencing method for double-Cys variant libraries of proteins that precisely and simultaneously locates both Cys residues within each polypeptide. HTDS of the abundant E. coli periplasmic chaperone HdeA revealed distinct classes of disordered hydrophobic conformers with variable cytotoxicity depending on where the backbone was cross-linked. HTDS can bridge conformational and phenotypic landscapes for many proteins that function in disulfide-permissive environments.


Subject(s)
Escherichia coli Proteins , Protein Folding , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Conformation , Disulfides/metabolism , High-Throughput Nucleotide Sequencing , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism
6.
Annu Rev Cell Dev Biol ; 31: 741-77, 2015.
Article in English | MEDLINE | ID: mdl-26422333

ABSTRACT

The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type-specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: (a) dendrite shape, including branching pattern and geometry of the arbor; (b) dendritic arbor size;


Subject(s)
Dendrites/physiology , Animals , Chromosome Pairing/physiology , Humans
7.
EMBO J ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39333774

ABSTRACT

The precise organization of pre- and postsynaptic terminals is crucial for normal synaptic function in the brain. In addition to its canonical role as a neurotrophin-3 receptor tyrosine kinase, postsynaptic TrkC promotes excitatory synapse organization through interaction with presynaptic receptor-type tyrosine phosphatase PTPσ. To isolate the synaptic organizer function of TrkC from its role as a neurotrophin-3 receptor, we generated mice carrying TrkC point mutations that selectively abolish PTPσ binding. The excitatory synapses in mutant mice had abnormal synaptic vesicle clustering and postsynaptic density elongation, more silent synapses, and fewer active synapses, which additionally exhibited enhanced basal transmission with impaired release probability. Alongside these phenotypes, we observed aberrant synaptic protein phosphorylation, but no differences in the neurotrophin signaling pathway. Consistent with reports linking these aberrantly phosphorylated proteins to neuropsychiatric disorders, mutant TrkC knock-in mice displayed impaired social responses and increased avoidance behavior. Thus, through its regulation of synaptic protein phosphorylation, the TrkC-PTPσ complex is crucial for the maturation, but not formation, of excitatory synapses in vivo.

8.
Trends Biochem Sci ; 48(12): 1044-1057, 2023 12.
Article in English | MEDLINE | ID: mdl-37839971

ABSTRACT

The ability of neurites of the same neuron to avoid each other (self-avoidance) is a conserved feature in both invertebrates and vertebrates. The key to self-avoidance is the generation of a unique subset of cell-surface proteins in individual neurons engaging in isoform-specific homophilic interactions that drive neurite repulsion rather than adhesion. Among these cell-surface proteins are fly Dscam1 and vertebrate clustered protocadherins (cPcdhs), as well as the recently characterized shortened Dscam (sDscam) in the Chelicerata. Herein, we review recent advances in our understanding of how cPcdh, Dscam, and sDscam cell-surface recognition codes are expressed and translated into cellular functions essential for neural wiring.


Subject(s)
Cell Adhesion Molecules , Drosophila Proteins , Protocadherins , Animals , Cell Adhesion Molecules/metabolism , Cell Communication , Drosophila Proteins/metabolism , Neurons/metabolism , Protein Isoforms/metabolism , Invertebrates , Vertebrates
9.
EMBO J ; 42(24): e113941, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38054357

ABSTRACT

The long noncoding RNA (lncRNA) AUXIN-REGULATED PROMOTER LOOP (APOLO) recognizes a subset of target loci across the Arabidopsis thaliana genome by forming RNA-DNA hybrids (R-loops) and modulating local three-dimensional chromatin conformation. Here, we show that APOLO regulates shade avoidance syndrome by dynamically modulating expression of key factors. In response to far-red (FR) light, expression of APOLO anti-correlates with that of its target BRANCHED1 (BRC1), a master regulator of shoot branching in Arabidopsis thaliana. APOLO deregulation results in BRC1 transcriptional repression and an increase in the number of branches. Accumulation of APOLO transcription fine-tunes the formation of a repressive chromatin loop encompassing the BRC1 promoter, which normally occurs only in leaves and in a late response to far-red light treatment in axillary buds. In addition, our data reveal that APOLO participates in leaf hyponasty, in agreement with its previously reported role in the control of auxin homeostasis through direct modulation of auxin synthesis gene YUCCA2, and auxin efflux genes PID and WAG2. We show that direct application of APOLO RNA to leaves results in a rapid increase in auxin signaling that is associated with changes in the plant response to far-red light. Collectively, our data support the view that lncRNAs coordinate shade avoidance syndrome in A. thaliana, and reveal their potential as exogenous bioactive molecules. Deploying exogenous RNAs that modulate plant-environment interactions may therefore become a new tool for sustainable agriculture.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA, Long Noncoding , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Epigenesis, Genetic , Chromatin/metabolism , Gene Expression Regulation, Plant , Light , Transcription Factors/metabolism
10.
EMBO J ; 42(8): e111472, 2023 04 17.
Article in English | MEDLINE | ID: mdl-36912149

ABSTRACT

For shade-intolerant plants, changes in light quality through competition from neighbors trigger shade avoidance syndrome (SAS): a series of morphological and physiological adaptations that are ultimately detrimental to plant health and crop yield. Phytochrome-interacting factor 7 (PIF7) is a major transcriptional regulator of SAS in Arabidopsis; however, how it regulates gene expression is not fully understood. Here, we show that PIF7 directly interacts with the histone chaperone anti-silencing factor 1 (ASF1). The ASF1-deprived asf1ab mutant showed defective shade-induced hypocotyl elongation. Histone regulator homolog A (HIRA), which mediates deposition of the H3.3 variant into chromatin, is also involved in SAS. RNA/ChIP-sequencing analyses identified the role of ASF1 in the direct regulation of a subset of PIF7 target genes. Furthermore, shade-elicited gene activation is accompanied by H3.3 enrichment, which is mediated by the PIF7-ASF1-HIRA regulatory module. Collectively, our data reveal that PIF7 recruits ASF1-HIRA to increase H3.3 incorporation into chromatin to promote gene transcription, thus enabling plants to effectively respond to environmental shade.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Factor VII/genetics , Phytochrome/genetics , Chromatin/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Plant , DNA-Binding Proteins/metabolism
11.
Proc Natl Acad Sci U S A ; 121(42): e2320187121, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39382994

ABSTRACT

Canopy shade enhances the activity of PHYTOCHROME INTERACTING FACTORs (PIFs) to boost auxin synthesis in the cotyledons. Auxin, together with local PIFs and their positive regulator CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1), promotes hypocotyl growth to facilitate access to light. Whether shade alters the cellular redox status thereby affecting growth responses, remains unexplored. Here, we show that, under shade, high auxin levels increased reactive oxygen species and nitric oxide accumulation in the hypocotyl of Arabidopsis. This nitroxidative environment favored the promotion of hypocotyl growth by COP1 under shade. We demonstrate that COP1 is S-nitrosylated, particularly under shade. Impairing this redox regulation enhanced COP1 degradation by the proteasome and diminished the capacity of COP1 to interact with target proteins and to promote hypocotyl growth. Disabling this regulation also generated transversal asymmetries in hypocotyl growth, indicating poor coordination among different cells, which resulted in random hypocotyl bending and predictably low ability to compete with neighbors. These findings highlight the significance of redox signaling in the control of diffuse growth during shade avoidance.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Hypocotyl , Reactive Oxygen Species , Ubiquitin-Protein Ligases , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Reactive Oxygen Species/metabolism , Hypocotyl/growth & development , Hypocotyl/metabolism , Ubiquitin-Protein Ligases/metabolism , Nitric Oxide/metabolism , Indoleacetic Acids/metabolism , Light , Gene Expression Regulation, Plant/radiation effects , Oxidation-Reduction , Signal Transduction
12.
Proc Natl Acad Sci U S A ; 121(30): e2315778121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012827

ABSTRACT

For plants adapted to bright light, a decrease in the amount of light received can be detrimental to their growth and survival. Consequently, in response to shade from surrounding vegetation, they initiate a suite of molecular and morphological changes known as the shade avoidance response through which stems and petioles elongate in search for light. Under sunlight-night cycles, the plant's responsiveness to shade varies across the day, being maximal at dusk time. While a role for the circadian clock in this regulation has long been proposed, mechanistic understanding of how it is achieved is incomplete. Here, we show that the clock component GIGANTEA (GI) directly interacts with the transcriptional regulator PHYTOCHROME INTERACTING FACTOR 7 (PIF7), a key player in the response to shade. GI represses PIF7 transcriptional activity and the expression of its target genes in response to shade, thereby fine-tuning the magnitude of the response to limiting light conditions. We find that under light/dark cycles, this function of GI is required to adequately modulate the gating of the response to shade at dusk. Importantly, we also show that this circuit primarily operates in epidermal cells, highlighting the relevance of tissue-specific clock-output connections for the regulation of plant development in resonance with the environment.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Basic Helix-Loop-Helix Transcription Factors , Gene Expression Regulation, Plant , Light , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Circadian Rhythm/physiology , Circadian Clocks/physiology , Circadian Clocks/genetics , DNA-Binding Proteins
13.
Proc Natl Acad Sci U S A ; 121(17): e2319625121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38640343

ABSTRACT

Distributed nonconvex optimization underpins key functionalities of numerous distributed systems, ranging from power systems, smart buildings, cooperative robots, vehicle networks to sensor networks. Recently, it has also merged as a promising solution to handle the enormous growth in data and model sizes in deep learning. A fundamental problem in distributed nonconvex optimization is avoiding convergence to saddle points, which significantly degrade optimization accuracy. We find that the process of quantization, which is necessary for all digital communications, can be exploited to enable saddle-point avoidance. More specifically, we propose a stochastic quantization scheme and prove that it can effectively escape saddle points and ensure convergence to a second-order stationary point in distributed nonconvex optimization. With an easily adjustable quantization granularity, the approach allows a user to control the number of bits sent per iteration and, hence, to aggressively reduce the communication overhead. Numerical experimental results using distributed optimization and learning problems on benchmark datasets confirm the effectiveness of the approach.

14.
Proc Natl Acad Sci U S A ; 121(29): e2319829121, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38976736

ABSTRACT

In the developing human brain, only 53 stochastically expressed clustered protocadherin (cPcdh) isoforms enable neurites from individual neurons to recognize and self-avoid while simultaneously maintaining contact with neurites from other neurons. Cell assays have demonstrated that self-recognition occurs only when all cPcdh isoforms perfectly match across the cell boundary, with a single mismatch in the cPcdh expression profile interfering with recognition. It remains unclear, however, how a single mismatched isoform between neighboring cells is sufficient to block erroneous recognitions. Using systematic cell aggregation experiments, we show that abolishing cPcdh interactions on the same membrane (cis) results in a complete loss of specific combinatorial binding between cells (trans). Our computer simulations demonstrate that the organization of cPcdh in linear array oligomers, composed of cis and trans interactions, enhances self-recognition by increasing the concentration and stability of cPcdh trans complexes between the homotypic membranes. Importantly, we show that the presence of mismatched isoforms between cells drastically diminishes the concentration and stability of the trans complexes. Overall, we provide an explanation for the role of the cPcdh assembly arrangements in neuronal self/non-self-discrimination underlying neuronal self-avoidance.


Subject(s)
Cadherins , Neurons , Protein Isoforms , Humans , Neurons/metabolism , Cadherins/metabolism , Protein Isoforms/metabolism , Protein Isoforms/genetics , Cell Communication , Computer Simulation , Neurites/metabolism , Cell Membrane/metabolism
15.
J Neurosci ; 44(23)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38631914

ABSTRACT

Foraging decisions involve assessing potential risks and prioritizing food sources, which can be challenging when confronted with changing and conflicting circumstances. A crucial aspect of this decision-making process is the ability to actively overcome defensive reactions to threats and focus on achieving specific goals. The ventral pallidum (VP) and basolateral amygdala (BLA) are two brain regions that play key roles in regulating behavior motivated by either rewards or threats. However, it is unclear whether these regions are necessary in decision-making processes involving competing motivational drives during conflict. Our aim was to investigate the requirements of the VP and BLA for foraging choices in conflicts involving overcoming defensive responses. Here, we used a novel foraging task and pharmacological techniques to inactivate either the VP or BLA or to disconnect these brain regions before conducting a conflict test in male rats. Our findings showed that BLA is necessary for making risky choices during conflicts, whereas VP is necessary for invigorating the drive to obtain food, regardless of the presence of conflict. Importantly, our research revealed that the connection between VP and BLA is critical in controlling risky food-seeking choices during conflict situations. This study provides a new perspective on the collaborative function of VP and BLA in driving behavior, aimed at achieving goals in the face of dangers.


Subject(s)
Amygdala , Basal Forebrain , Reward , Animals , Male , Rats , Basal Forebrain/physiology , Amygdala/physiology , Conflict, Psychological , Basolateral Nuclear Complex/physiology , Risk-Taking , Rats, Long-Evans , Feeding Behavior/physiology , Fear/physiology
16.
J Neurosci ; 44(34)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-38997158

ABSTRACT

Naturalistic observations show that animals pre-empt danger by moving to locations that increase their success in avoiding future threats. To test this in humans, we created a spatial margin of safety (MOS) decision task that quantifies pre-emptive avoidance by measuring the distance subjects place themselves to safety when facing different threats whose attack locations vary in predictability. Behavioral results show that human participants place themselves closer to safe locations when facing threats that attack in spatial locations with more outliers. Using both univariate and multivariate pattern analysis (MVPA) on fMRI data collected during a 2 h session on participants of both sexes, we demonstrate a dissociable role for the vmPFC in MOS-related decision-making. MVPA results revealed that the posterior vmPFC encoded for more unpredictable threats with univariate analyses showing a functional coupling with the amygdala and hippocampus. Conversely, the anterior vmPFC was more active for the more predictable attacks and showed coupling with the striatum. Our findings converge in showing that during pre-emptive danger, the anterior vmPFC may provide a safety signal, possibly via foreseeable outcomes, while the posterior vmPFC drives unpredictable danger signals.


Subject(s)
Magnetic Resonance Imaging , Prefrontal Cortex , Humans , Male , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Female , Adult , Young Adult , Decision Making/physiology , Safety , Space Perception/physiology , Brain Mapping , Avoidance Learning/physiology
17.
J Neurosci ; 44(41)2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39214705

ABSTRACT

As evidence mounts that the cardiac-sympathetic nervous system reacts to challenging cognitive settings, we ask if these responses are epiphenomenal companions or if there is evidence suggesting a more intertwined role of this system with cognitive function. Healthy male and female human participants performed an approach-avoidance paradigm, trading off monetary reward for painful electric shock, while we recorded simultaneous electroencephalographic and cardiac-sympathetic signals. Participants were reward sensitive but also experienced approach-avoidance "conflict" when the subjective appeal of the reward was near equivalent to the revulsion of the cost. Drift-diffusion model parameters suggested that participants managed conflict in part by integrating larger volumes of evidence into choices (wider decision boundaries). Late alpha-band (neural) dynamics were consistent with widening decision boundaries serving to combat reward sensitivity and spread attention more fairly to all dimensions of available information. Independently, wider boundaries were also associated with cardiac "contractility" (an index of sympathetically mediated positive inotropy). We also saw evidence of conflict-specific "collaboration" between the neural and cardiac-sympathetic signals. In states of high conflict, the alignment (i.e., product) of alpha dynamics and contractility were associated with a further widening of the boundary, independent of either signal's singular association. Cross-trial coherence analyses provided additional evidence that the autonomic systems controlling cardiac-sympathetics might influence the assessment of information streams during conflict by disrupting or overriding reward processing. We conclude that cardiac-sympathetic control might play a critical role, in collaboration with cognitive processes, during the approach-avoidance conflict in humans.


Subject(s)
Alpha Rhythm , Conflict, Psychological , Humans , Male , Female , Alpha Rhythm/physiology , Adult , Young Adult , Avoidance Learning/physiology , Reward , Electroencephalography , Myocardial Contraction/physiology , Sympathetic Nervous System/physiology , Heart/physiology , Heart Rate/physiology
18.
Plant J ; 117(6): 1893-1913, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38289877

ABSTRACT

Shade avoidance syndrome (SAS) is triggered by a low ratio of red (R) to far-red (FR) light (R/FR ratio), which is caused by neighbor detection and/or canopy shade. In order to compete for the limited light, plants elongate hypocotyls and petioles by deactivating phytochrome B (phyB), a major R light photoreceptor, thus releasing its inhibition of the growth-promoting transcription factors PHYTOCHROME-INTERACTING FACTORs. Under natural conditions, plants must cope with abiotic stresses such as drought, soil salinity, and extreme temperatures, and biotic stresses such as pathogens and pests. Plants have evolved sophisticated mechanisms to simultaneously deal with multiple environmental stresses. In this review, we will summarize recent major advances in our understanding of how plants coordinately respond to shade and environmental stresses, and will also discuss the important questions for future research. A deep understanding of how plants synergistically respond to shade together with abiotic and biotic stresses will facilitate the design and breeding of new crop varieties with enhanced tolerance to high-density planting and environmental stresses.


Subject(s)
Arabidopsis Proteins , Phytochrome , Light , Plant Breeding , Plants , Stress, Physiological
19.
Front Neuroendocrinol ; 74: 101145, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862092

ABSTRACT

Understanding emotions in males is crucial given their higher susceptibility to substance use, interpersonal violence, and suicide compared to females. Steroid hormones are assumed to be critical biological factors that affect and modulate emotion-related behaviors, together with psychological and social factors. This review explores whether males' abilities to recognize emotions of others and regulate their own emotions are associated with testosterone, cortisol, and their interaction. Higher levels of testosterone were associated with improved recognition and heightened sensitivity to threatening faces. In contrast, higher cortisol levels positively impacted emotion regulation ability. Indirect evidence from neuroimaging research suggested a link between higher testosterone levels and difficulties in cognitive emotion regulation. However, this notion must be investigated in future studies using different emotion regulation strategies and considering social status. The present review contributes to the understanding of how testosterone and cortisol affect psychological well-being and emotional behavior in males.


Subject(s)
Emotional Regulation , Hydrocortisone , Testosterone , Humans , Male , Hydrocortisone/metabolism , Emotional Regulation/physiology , Testosterone/metabolism , Testosterone/physiology , Emotions/physiology , Stress, Psychological/metabolism , Recognition, Psychology/physiology
20.
EMBO J ; 40(1): e104273, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33264441

ABSTRACT

Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.


Subject(s)
Acclimatization/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant/genetics , Transcription, Genetic/genetics , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/genetics , Hypocotyl/genetics , Phytochrome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL