ABSTRACT
The recent, rapid spreading of non-native pink salmon Oncorhynchus gorbuscha in the North Atlantic area has raised concerns about their possible negative impacts on native salmonid species. Potential interactions include competition for food resources during the short freshwater phase of juvenile O. gorbuscha, but little is known about their feeding behavior in the newly occupied North Atlantic rivers. Using stable isotope and stomach content analyses, patterns of freshwater feeding of non-native O. gorbuscha fry were studied in a large Fennoscandian river, the Teno, that discharges to the Barents Sea. Changes in stable isotope values (δ13 C, δ15 N, δ34 S) and stomach contents from the period of emergence (April to mid-May) to estuarine entry (late May/June) were examined and provided both temporally integrated and short-term indicators of freshwater feeding dependency. In addition, the occurrence of juvenile O. gorbuscha and changes in their length and weight during their emergence/migration period were investigated. Juvenile O. gorbuscha were at the spawning grounds from April through to mid-May with abundance peaking in mid-May. Fish moved to the estuary by late May and their abundance decreased toward June, and their body size increased concurrently. Stomach analyses indicated no feeding activity in April-early May in the spawning areas, but the stomach fullness indices increased markedly in fish sampled in the estuary in May and June. The most important prey items in stomachs were Chironomidae and Ephemeroptera larvae. Significant changes in all analysed stable isotopes were detected among sample periods, with a peak in mid-May and June showing significantly lower values than other sample periods. A change from the higher values reflective of parental marine feeding to the lower values reflective of freshwater feeding indicated active in-river feeding by juveniles during the study period. The documented active freshwater feeding of non-native juvenile O. gorbuscha suggests potential resource competition with native fluvial fishes, particularly salmonids.
Subject(s)
Rivers , Salmon , Animals , Fresh Water , Diet/veterinary , IsotopesABSTRACT
This article focuses on the study of the distribution of 137Cs in the bottom sediments of Arctic rivers of the Barents Sea basin (using the example of the Nenets Autonomous Okrug, Russian Arctic). This research is relevant due to the poorly studied region and the significant number of radiation-hazardous facilities in the Arctic zone of Russia, both those currently in operation and those that are "nuclear heritage sites". The study of 137Cs specific activity in bottom sediments was carried out in the period from 2020 to 2023 in the rivers Chizha, Nes, Vizhas, Oma, Pechora (river delta), as well as the rivers Kolva and Usa (first and second order tributaries, respectively, of the Pechora River). A total of 199 samples were collected. In addition to 137Cs specific activity, the samples were analysed for sediment particle size distribution, organic matter content, carbonate content and ash content. The 137Cs specific activity mainly ranged from the minimum detectable specific activity to 5.4 ± 0.8 Bq·kg-1. In the Nes River basin (Kaninskaya tundra), the 137Cs content in bottom sediments reached 36.0 ± 3.2 Bq·kg-1 (in the case of lake sediments) and 22.9 ± 3.7 Bq·kg-1 (in the case of river sediments), values that are higher than those of the North-West of Russia. Considering the large area of the study area (Kaninskaya tundra, Pechora river delta, southern part of Bolshezemelskaya tundra) and the similarity of physical and chemical parameters of the studied rivers, it is possible to assume the existence of a zone of increased radionuclide content in the Nes river basin. This may be due to the runoff from the Nes River catchment area, its hydrological features, and the accumulation of 137Cs in the small fractions of bottom sediments. The results confirm the conclusions of previous soil studies in the Nes river basin. The main sources of elevated 137Cs content are global atmospheric deposition and the Chernobyl Nuclear Power Plant accident.
Subject(s)
Cesium Radioisotopes , Geologic Sediments , Radiation Monitoring , Rivers , Water Pollutants, Radioactive , Cesium Radioisotopes/analysis , Rivers/chemistry , Geologic Sediments/chemistry , Water Pollutants, Radioactive/analysis , Russia , Arctic RegionsABSTRACT
Ecology and biogeography of bivalve transmissible neoplasia (BTN) are underexplored due to its recent discovery and a challenging diagnostics. Blue mussels harbour two evolutionary lineages of BTN, MtrBTN1 and MtrBTN2, both derived from Mytilus trossulus. MtrBTN1 has been found only in M. trossulus from North Pacific. MtrBTN2 parasitizes different Mytilus spp. worldwide. BTN in M. trossulus in the Atlantic sector has never been studied. We looked for BTN in mussels from the Barents Sea using flow cytometry of cells, qPCR with primers specific to cancer-associated alleles and sequencing of mtDNA and nuclear loci. Both MtrBTN1 and MtrBTN2 were present in our material, though their prevalence was low (~0.4%). All cancers parasitized M. trossulus except one, MtrBTN1, which was found in a hybrid between M. trossulus and M. edulis. The mtDNA haplotypes found in both lineages were nearly identical to those known from the Northwest Pacific but not from elsewhere. Our results suggest that these two lineages may have arrived in the Barents Sea in recent decades with the maritime transport along the Northern Sea Route. A young evolutionary age of MtrBTN1 seems to indicate that it is an emerging disease in the process of niche expansion. Comparing the new and the published sequence data on tumour suppressor p53, we proved that the prevalence of BTN in mussels can reach epizootic levels. The finding of diverse recombinants between paternally and maternally inherited mtDNAs in somatic tissues of M. trossulus was an unexpected result of our study.
Subject(s)
Mytilus edulis , Mytilus , Neoplasms , Animals , Mytilus edulis/genetics , Bays , Mytilus/genetics , DNA, Mitochondrial/geneticsABSTRACT
Arctic food webs are being impacted by borealisation and environmental change. To quantify the impact of these multiple forcings, it is crucial to accurately determine the temporal change in key ecosystem metrics, such as trophic position of top predators. Here, we measured stable nitrogen isotopes (δ15 N) in amino acids in harp seal teeth from across the North Atlantic spanning a period of 60 years to robustly assess multi-decadal trends in harp seal trophic position, accounting for changes in δ15 N at the base of the food web. We reveal long-term variations in trophic position of harp seals which are likely to reflect fluctuations in prey availability, specifically fish- or invertebrate-dominated diets. We show that the temporal trends in harp seal trophic position differ between the Northwest Atlantic, Greenland Sea and Barents Sea, suggesting divergent changes in each local ecosystem. Our results provide invaluable data for population dynamic and ecotoxicology studies.
Subject(s)
Caniformia , Seals, Earless , Animals , Ecosystem , Invertebrates , Food Chain , Biomarkers/metabolismABSTRACT
Disentangling empirically the many processes affecting spatial population synchrony is a challenge in population ecology. Two processes that could have major effects on the spatial synchrony of wild population dynamics are density dependence and variation in environmental conditions like temperature. Understanding these effects is crucial for predicting the effects of climate change on local and regional population dynamics. We quantified the direct contribution of local temperature and density dependence to spatial synchrony in the population dynamics of nine fish species inhabiting the Barents Sea. First, we estimated the degree to which the annual spatial autocorrelations in density are influenced by temperature. Second, we estimated and mapped the local effects of temperature and strength of density dependence on annual changes in density. Finally, we measured the relative effects of temperature and density dependence on the spatial synchrony in changes in density. Temperature influenced the annual spatial autocorrelation in density more in species with greater affinities to the benthos and to warmer waters. Temperature correlated positively with changes in density in the eastern Barents Sea for most species. Temperature had a weak synchronizing effect on density dynamics, while increasing strength of density dependence consistently desynchronised the dynamics. Quantifying the relative effects of different processes affecting population synchrony is important to better predict how population dynamics might change when environmental conditions change. Here, high degrees of spatial synchrony in the population dynamics remained unexplained by local temperature and density dependence, confirming the presence of additional synchronizing drivers, such as trophic interactions or harvesting.
Subject(s)
Ecology , Ecosystem , Animals , Temperature , Population DynamicsABSTRACT
Information about the dietary composition of a species is crucial to understanding their position and role in the food web. Increasingly, molecular approaches such as DNA metabarcoding are used in studying trophic relationships, not least because they may alleviate problems such as low taxonomic resolution or underestimation of digestible taxa in the diet. Here, we used DNA metabarcoding with universal primers for cytochrome c oxidase I (COI) to study the diet composition of the northern shrimp (Pandalus borealis), an Arctic keystone species with large socio-economic importance. Across locations, jellyfish and chaetognaths were the most important components in the diet of P. borealis, jointly accounting for 40%-60% of the total read abundance. This dietary importance of gelatinous zooplankton contrasts sharply with published results based on stomach content analysis. At the same time, diet composition differed between fjord and shelf locations, pointing to different food webs supporting P. borealis in these two systems. Our study underlines the potential of molecular approaches to provide new insights into the diet of marine invertebrates that are difficult to obtain with traditional methods, and calls for a revision of the role of gelatinous zooplankton in the diet of the key Arctic species P. borealis, and in extension, Arctic food webs.
Subject(s)
DNA Barcoding, Taxonomic , Diet , Pandalidae , Zooplankton , Animals , Arctic Regions , Food Chain , Pandalidae/genetics , Zooplankton/geneticsABSTRACT
Northeast Arctic cod, saithe and haddock are among the most important fisheries resources in Europe, largely shipped to various continental markets. The present study aimed to map the presence and distribution of larvae of parasitic nematodes in the Anisakidae family which are of socioeconomic and public health concern. Fishes were sourced from commercial catches during winter or spring in the southern Barents Sea. Samples of fish were inspected for nematodes using the UV-press method while anisakid species identification relied on sequencing of the mtDNA cox2 gene. Anisakis simplex (s.s.) was the most prevalent and abundant anisakid recorded, occurring at high infection levels in the viscera and flesh of cod and saithe, while being less abundant in haddock. Contracaecum osculatum (s.l.) larvae, not found in the fish flesh, showed moderate-to-high prevalence in saithe, haddock and cod, respectively. Most Pseudoterranova spp. larvae occurred at low-to-moderate prevalence, and low abundance, in the viscera (Pseudoterranova bulbosa) and flesh (Pseudoterranova decipiens (s.s.) and Pseudoterranova krabbei) of cod, only 2 P. decipiens (s.s.) appeared in the flesh of saithe. Body length was the single most important host-related factor to predict overall abundance of anisakid larvae in the fish species. The spatial distribution of Anisakis larvae in the fish flesh showed much higher abundances in the belly flaps than in the dorsal fillet parts. Trimming of the flesh by removing the belly flaps would reduce larval presence in the fillets of these gadid fish species by 8691%.
Subject(s)
Anisakiasis , Anisakis , Ascaridoidea , Fish Diseases , Gadiformes , Parasites , Animals , Fish Diseases/epidemiology , Fish Diseases/parasitology , Ascaridoidea/genetics , Anisakis/genetics , Fishes/parasitology , Larva/genetics , Anisakiasis/epidemiology , Anisakiasis/veterinary , Anisakiasis/parasitologyABSTRACT
In the bottom sediments from a number of the Barents Sea sites, including coastal areas of the Novaya Zemlya, Franz Josef Land, and Svalbard archipelagos, sulphate reduction rates were measured and the phylogenetic composition of sulphate-reducing bacterial (SRB) communities was analysed for the first time. Molecular genetic analysis of the sequences of the 16S rRNA and dsrB genes (the latter encodes the ß-subunit of dissimilatory (bi)sulphite reductase) revealed significant differences in the composition of bacterial communities in different sampling stations and sediment horizons of the Barents Sea depending on the physicochemical conditions. The major bacteria involved in reduction of sulphur compounds in Arctic marine bottom sediments belonged to Desulfobulbaceae, Desulfobacteraceae, Desulfovibrionaceae, Desulfuromonadaceae, and Desulfarculaceae families, as well as to uncultured clades SAR324 and Sva0485. Desulfobulbaceae and Desulfuromonadaceae predominated in the oxidised (Eh = 154-226 mV) upper layers of the sediments (up to 9% and 5.9% from all reads of the 16S rRNA gene sequences in the sample, correspondingly), while in deeper, more reduced layers (Eh = -210 to -105 mV) the share of Desulfobacteraceae in the SRB community was also significant (up to 5%). The highest relative abundance of members of Desulfarculaceae family (3.1%) was revealed in reduced layers of sandy-clayey sediments from the Barents Sea area affected by currents of transformed (mixed, with changed physicochemical characteristics) Atlantic waters.
Subject(s)
Desulfovibrio , Geologic Sediments , Bacteria/genetics , Desulfovibrio/genetics , Geologic Sediments/microbiology , Humans , Phylogeny , RNA, Ribosomal, 16S/genetics , SulfatesABSTRACT
The present study tracked oocyte development over 9 months and noted incidences of 'skipping', i.e., adults terminating their upcoming reproductive cycle, in field-caught north-east Arctic (NEA) haddock (Melanogrammus aeglefinus), currently the largest stock of this species. Applications of advanced image and histological techniques revealed the presence of cortical alveoli oocytes (CAO), which prevailed as the most advanced oocyte phase for 4-5 months. This new finding of an extended and early appearance of CAOs in this gadoid was supported by that vitellogenesis first started to appear 3 months later. The subsequent oocyte growth trajectories indicated that larger individuals [total length (TL) = 70 cm] typically spawn in the order of 3 weeks earlier than the smaller ones (TL = 40 cm). The spawning season appeared stretched over about 3 months. The majority of skipping females arrested oocyte growth at the CAO phase followed by atretic reabsorption. Compared to those individuals maturing for the spawning season, 'skippers' generally exhibited lower body condition, characterized also by relatively lower liver sizes at the time of the main spawning season. This study demonstrated well-developed skipping dynamics, but also that the CAO period, i.e., when skipping takes place, may be exceedingly long in this commercially valuable gadoid and that its reproductive cycle in many ways deviates from that of the data-rich, sympatric NEA cod (Gadus morhua).
Subject(s)
Gadiformes , Gadus morhua , Animals , Arctic Regions , Female , Oocytes , OogenesisABSTRACT
The spawning and egg development of invasive pink salmon Oncorhynchus gorbuscha were investigated in the large River Teno in the Barents Sea area where they spawned for the first time on a large scale in 2021. The spawning period started in early August and egg development was rapid. All eggs were eyed by mid-September and the first juveniles hatched in late September. In early October most eggs had hatched. Degree-days in water temperature suggested that egg deposition had mostly taken place in early August. Early egg development is discussed in relation to possible consequences for survival.
Subject(s)
Oncorhynchus , Salmon , Animals , Rivers , Temperature , WaterABSTRACT
Invasive pink salmon (Oncorhynchus gorbuscha) has been present in variable, but low, numbers in Norwegian waters since c. 1960, but beginning in 2017 their numbers have exploded in rivers in northern Norway, with considerable numbers also recorded in rivers in southern Norway and other countries bordering the North Atlantic. Analysis of pink salmon scales from two rivers draining to the western Barents Sea showed declining growth during the first weeks after entering the sea, and some individuals even showed a pronounced growth arrest, based on detailed scale circulus analyses. This was followed by a period of growth increase and stability during late summer and autumn, which may reflect a transition to better food sources, as the fish migrate from coastal waters to the open ocean, and as they grow larger and can eat larger and more energy efficient food items. Growth declined to a minimum during winter. Fish body size at spawning was positively correlated with the distance from scale focus to the last winter circulus, as well as with the number of circuli. When dividing scale growth into three periods, better growth during the first period at sea was related to increased fish body length at spawning, but this early growth explained only a minor part (6%) of the variation in final body length. The reason for this may be large individual variation in growth combined with large mortality during the first weeks at sea. If mortality is selective, removing fish with poor growth may reduce a correlation between early growth and body size at spawning. Scale growth during late summer and early autumn explained more of the variation in fish length at spawning (27%). Hence, late summer and early autumn was likely an important period for marine growth and survival in the invasive pink salmon.
Subject(s)
Rivers , Salmon , Animals , Body Size , Norway , SeasonsABSTRACT
We present the results of our studies of the helminth fauna and the diet of the black-legged kittiwake (Rissa tridactyla Linnaeus, 1758) in the Gorodetskiy bird colonies on the Rybachiy Peninsula (Murman coast of the Barents Sea) carried out in 2006-2008 and in 2018-2020. We did not find any noticeable changes in the species diversity of the helminth fauna of the kittiwakes, the proportion of the dominant parasite species and the values of most quantitative infection indices between the two study periods. At the same time, there was a marked decrease in the mean abundance of the dominant cestode species (Alcataenia larina Krabbe, 1869 and Tetrabothrius erostris Loennberg, 1889) in 2018-2020 as compared to 2006-2008. The changes in parasitology of birds found in our study appear to be largely determined by fluctuations of abiotic conditions (increased water and air temperature) and the state of the food supply (size structure of the zooplankton) in the study area.
Subject(s)
Cestoda , Charadriiformes , Animals , Arctic Regions , Birds , Charadriiformes/parasitology , Climate ChangeABSTRACT
In summer 2016, we observed premature feather malformation among goslings of greater white-fronted goose (Anser alb. albifrons), between 7 and 10 weeks of age on family gathering areas on Kolguev Island, Russia, the most important breeding island in the Western Palearctic. Rarely reported in wild birds, to our knowledge, this phenomenon has not been recorded in wild geese of this species, despite continuous ringing and marking of thousands of wild geese across Northern Europe and Arctic Siberia. This feather malformations were documented in 36 unfledged goslings showing weak feather basis, deformed or unevenly grown wing feathers or even dead feather buds. Approximately about one-third of all chicks were affected. Feather malformations like this, causing flightless chicks as a result, have never been noticed in any other of our 12 study years since 2006. The lesion was characterised by soft feather buds, weak or incomplete wing feathers and lack of feather development. No other abnormalities were observed in the goslings, so goslings did not differ in weight or body sizes. Affected fledglings never became airworthy and were killed in large numbers by predators or at latest perished during the Arctic winter. Supplementary Information: The online version contains supplementary material available at 10.1007/s10344-022-01603-9.
ABSTRACT
The article presents a report on the findings of representatives of frenulate pogonophorans Nereilinum murmanicum in the northern and central parts of the Barents Sea, which significantly expands the range of this species and provides guidance on its distribution in this basin. Here we present the coordinates of new finds with an indication of the depth. Find points were associated with data on known and potential hydrocarbon deposits.
Subject(s)
Annelida , Polychaeta , Animals , HydrocarbonsABSTRACT
Capelin (Mallotus villosus) is a short-lived (1-4 years) fish species, that plays a crucial role by dominating the intermediate trophic level in the Barents Sea. Several episodes of extreme biomass decline (collapse) have been observed during the last three decades. We postulate that these collapses might be regulated by food availability (bottom-up effect) and/or by time discrepancy between capelin feeding and abundance of its prey (match-mismatch hypothesis). This paper investigates our postulate using a model consisting of a set of coupled differential equations to describe the predator-prey system, with a single delay term, τ, in description of the predator dynamics. We derive theoretical conditions on τ, as well as determine how changes in these conditions define different stability regimes of the system. Unconstrained optimization is used to calculate optimal model parameters by fitting the predator-prey model to empirical data. The optimization results are combined with those from the theoretical analysis, to make inference about the empirical system stability. Our results show that Hopf bifurcation occurs in the predatory-prey system when τ exceeds a theoretically derived value τ∗>0. This value represents the critical time for prey availability in advance of the optimal predator growth period.Set into an ecological context, our findings provide mathematical evidence for validity of the match-mismatch hypothesis and a bottom-up effect for capelin.
Subject(s)
Ecosystem , Predatory Behavior , Animals , Biomass , Fishes , Food Chain , Models, Biological , Population DynamicsABSTRACT
The degree of contamination of Saccharina latissima, the dominant species among macrophyte algae in the sublittoral zones of the Kola Bay and Eastern Murman of the Barents Sea, with organotin compounds (monobutyltin, dibutyltin, tributyltin, tetrabutyltin, triphenyltin, and tricyclohexyltin) has been assessed. The results show a moderate degree of contamination of the studied samples with organotin compounds. The total concentration of six tin compounds was 17-74 ng/g (dry weight) in algal samples. Analysis of the indices of degradation of butyl tin derivatives showed active processes of tributyltin and tetrabutyltin transformation in algae.
Subject(s)
Organotin Compounds , Phaeophyceae , Water Pollutants, ChemicalABSTRACT
Species are redistributing globally in response to climate warming, impacting ecosystem functions and services. In the Barents Sea, poleward expansion of boreal species and a decreased abundance of Arctic species are causing a rapid borealization of the Arctic communities. This borealization might have profound consequences on the Arctic food web by creating novel feeding interactions between previously non co-occurring species. An early identification of new feeding links is crucial to predict their ecological impact. However, detection by traditional approaches, including stomach content and isotope analyses, although fundamental, cannot cope with the speed of change observed in the region, nor with the urgency of understanding the consequences of species redistribution for the marine ecosystem. In this study, we used an extensive food web (metaweb) with nearly 2,500 documented feeding links between 239 taxa coupled with a trait data set to predict novel feeding interactions and to quantify their potential impact on Arctic food web structure. We found that feeding interactions are largely determined by the body size of interacting species, although species foraging habitat and metabolic type are also important predictors. Further, we found that all boreal species will have at least one potential resource in the Arctic region should they redistribute therein. During 2014-2017, 11 boreal species were observed in the Arctic region of the Barents Sea. These incoming species, which are all generalists, change the structural properties of the Arctic food web by increasing connectance and decreasing modularity. In addition, these boreal species are predicted to initiate novel feeding interactions with the Arctic residents, which might amplify their impact on Arctic food web structure affecting ecosystem functioning and vulnerability. Under the ongoing species redistribution caused by environmental change, we propose merging a trait-based approach with ecological network analysis to efficiently predict the impacts of range-shifting species on food webs.
Subject(s)
Ecosystem , Food Chain , Arctic Regions , Climate , Climate ChangeABSTRACT
The Arctic Ocean region is currently undergoing dramatic changes, which will likely alter the nutrient cycles that underpin Arctic marine ecosystems. Phosphate is a key limiting nutrient for marine life but gaps in our understanding of the Arctic phosphorus (P) cycle persist. In this study, we investigate the benthic burial and recycling of phosphorus using sediments and pore waters from the Eurasian Arctic margin, including the Barents Sea slope and the Yermak Plateau. Our results highlight that P is generally lost from sediments with depth during organic matter respiration. On the Yermak Plateau, remobilization of P results in a diffusive flux of P to the seafloor of between 96 and 261 µmol m-2 yr-1. On the Barents Sea slope, diffusive fluxes of P are much larger (1736-2449 µmol m-2 yr-1), but these fluxes are into near-surface sediments rather than to the bottom waters. The difference in cycling on the Barents Sea slope is controlled by higher fluxes of fresh organic matter and active iron cycling. As changes in primary productivity, ocean circulation and glacial melt continue, benthic P cycling is likely to be altered with implications for P imported into the Arctic Ocean Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Subject(s)
Ice Cover/chemistry , Phosphorus/analysis , Arctic Regions , Diffusion , Ecosystem , Geologic Sediments/chemistry , Global Warming , Iron/analysis , Norway , Organic Chemicals/analysis , Seasons , Seawater/chemistryABSTRACT
Nutrient supply to the surface ocean is a key factor regulating primary production in the Arctic Ocean under current conditions and with ongoing warming and sea ice losses. Here we present seasonal nitrate concentration and hydrographic data from two oceanographic moorings on the northern Barents shelf between autumn 2017 and summer 2018. The eastern mooring was sea ice-covered to varying degrees during autumn, winter and spring, and was characterized by more Arctic-like oceanographic conditions, while the western mooring was ice-free year-round and showed a greater influence of Atlantic water masses. The seasonal cycle in nitrate dynamics was similar under ice-influenced and ice-free conditions, with biological nitrate uptake beginning near-synchronously in early May, but important differences between the moorings were observed. Nitrate supply to the surface ocean preceding and during the period of rapid drawdown was greater at the ice-free more Atlantic-like western mooring, and nitrate drawdown occurred more slowly over a longer period of time. This suggests that with ongoing sea ice losses and Atlantification, the expected shift from more Arctic-like ice-influenced conditions to more Atlantic-like ice-free conditions is likely to increase nutrient availability and the duration of seasonal drawdown in this Arctic shelf region. The extent to which this increased nutrient availability and longer drawdown periods will lead to increases in total nitrate uptake, and support the projected increases in primary production, will depend on changes in upper ocean stratification and their effect on light availability to phytoplankton as changes in climate and the physical environment proceed. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Subject(s)
Ice Cover/chemistry , Nitrates/analysis , Aquatic Organisms/metabolism , Arctic Regions , Atlantic Ocean , Biological Transport , Ecosystem , Global Warming , Nitrates/metabolism , Phytoplankton/growth & development , Phytoplankton/metabolism , Salinity , Seasons , Seawater/chemistry , Temperature , WindABSTRACT
Process-based, mechanistic investigations of organic matter transformation and diagenesis directly beneath the sediment-water interface (SWI) in Arctic continental shelves are vital as these regions are at greatest risk of future change. This is in part due to disruptions in benthic-pelagic coupling associated with ocean current change and sea ice retreat. Here, we focus on a high-resolution, multi-disciplinary set of measurements that illustrate how microbial processes involved in the degradation of organic matter are directly coupled with inorganic and organic geochemical sediment properties (measured and modelled) as well as the extent/depth of bioturbation. We find direct links between aerobic processes, reactive organic carbon and highest abundances of bacteria and archaea in the uppermost layer (0-4.5 cm depth) followed by dominance of microbes involved in nitrate/nitrite and iron/manganese reduction across the oxic-anoxic redox boundary (approx. 4.5-10.5 cm depth). Sulfate reducers dominate in the deeper (approx. 10.5-33 cm) anoxic sediments which is consistent with the modelled reactive transport framework. Importantly, organic matter reactivity as tracked by organic geochemical parameters (n-alkanes, n-alkanoic acids, n-alkanols and sterols) changes most dramatically at and directly below the SWI together with sedimentology and biological activity but remained relatively unchanged across deeper changes in sedimentology. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.