ABSTRACT
Homeostasis of neural firing properties is important in stabilizing neuronal circuitry, but how such plasticity might depend on alternative splicing is not known. Here we report that chronic inactivity homeostatically increases action potential duration by changing alternative splicing of BK channels; this requires nuclear export of the splicing factor Nova-2. Inactivity and Nova-2 relocation were connected by a novel synapto-nuclear signaling pathway that surprisingly invoked mechanisms akin to Hebbian plasticity: Ca2+-permeable AMPA receptor upregulation, L-type Ca2+ channel activation, enhanced spine Ca2+ transients, nuclear translocation of a CaM shuttle, and nuclear CaMKIV activation. These findings not only uncover commonalities between homeostatic and Hebbian plasticity but also connect homeostatic regulation of synaptic transmission and neuronal excitability. The signaling cascade provides a full-loop mechanism for a classic autoregulatory feedback loop proposed â¼25 years ago. Each element of the loop has been implicated previously in neuropsychiatric disease.
Subject(s)
Large-Conductance Calcium-Activated Potassium Channels/metabolism , Long-Term Potentiation/physiology , Nerve Tissue Proteins/metabolism , RNA-Binding Proteins/metabolism , Action Potentials/physiology , Alternative Splicing/genetics , Alternative Splicing/physiology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 1/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Female , HEK293 Cells , Homeostasis/physiology , Humans , Large-Conductance Calcium-Activated Potassium Channels/genetics , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/physiology , Neuro-Oncological Ventral Antigen , Neuronal Plasticity/physiology , Neurons/metabolism , RNA-Binding Proteins/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction , Synapses/metabolism , Synaptic Transmission/physiologyABSTRACT
KCNQ1 is the pore-forming subunit of cardiac slow-delayed rectifier potassium (IKs) channels. Mutations in the kcnq1 gene are the leading cause of congenital long QT syndrome (LQTS). Here, we present the cryoelectron microscopy (cryo-EM) structure of a KCNQ1/calmodulin (CaM) complex. The conformation corresponds to an "uncoupled," PIP2-free state of KCNQ1, with activated voltage sensors and a closed pore. Unique structural features within the S4-S5 linker permit uncoupling of the voltage sensor from the pore in the absence of PIP2. CaM contacts the KCNQ1 voltage sensor through a specific interface involving a residue on CaM that is mutated in a form of inherited LQTS. Using an electrophysiological assay, we find that this mutation on CaM shifts the KCNQ1 voltage-activation curve. This study describes one physiological form of KCNQ1, depolarized voltage sensors with a closed pore in the absence of PIP2, and reveals a regulatory interaction between CaM and KCNQ1 that may explain CaM-mediated LQTS.
Subject(s)
Calmodulin/chemistry , KCNQ1 Potassium Channel/chemistry , Long QT Syndrome/metabolism , Amino Acid Sequence , Animals , Calmodulin/metabolism , Cryoelectron Microscopy , Humans , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Models, Molecular , Mutation , Sequence Alignment , Xenopus laevisABSTRACT
The Calvin-Benson-Bassham (CBB) cycle is the ancestral CO2 assimilation pathway and is found in all photosynthetic organisms. Biochemical extensions to the CBB cycle have evolved that allow the resulting pathways to act as CO2 concentrating mechanisms, either spatially in the case of C4 photosynthesis or temporally in the case of Crassulacean acid metabolism (CAM). While the biochemical steps in the C4 and CAM pathways are known, questions remain on their integration and regulation with CBB cycle activity. The application of omic and transgenic technologies is providing a more complete understanding of the biochemistry of C4 and CAM species and will also provide insight into the CBB cycle in these plants. As the global population increases, new solutions are required to increase crop yields and meet demands for food and other bioproducts. Previous work in C3 species has shown that increasing carbon assimilation through genetic manipulation of the CBB cycle can increase biomass and yield. There may also be options to improve photosynthesis in species using C4 photosynthesis and CAM through manipulation of the CBB cycle in these plants. This is an underexplored strategy and requires more basic knowledge of CBB cycle operation in these species to enable approaches for increased productivity.
Subject(s)
Carbon Dioxide , Crassulacean Acid Metabolism , Carbon Dioxide/metabolism , Photosynthesis/physiologyABSTRACT
During early postnatal brain development, the formation of proper synaptic connections between neurons is crucial for the development of functional neural networks. Recent studies have established the involvement of protease-mediated modulations of extracellular components in both synapse formation and elimination. The secretory serine protease neuropsin (also known as kallikrein-8) cleaves a few transmembrane or extracellular matrix proteins in a neural activity-dependent manner and regulates neural plasticity. However, neuropsin-dependent proteolysis of extracellular components and the involvement of these components in mouse brain development are poorly understood. We have observed that during hippocampus development, expression of neuropsin and levels of full-length or cleaved fragments of the neuropsin substrate protein L1 cell adhesion molecule (L1CAM) positively correlate with synaptogenesis. Our subcellular fractionation studies show that the expression of neuropsin and its proteolytic activity on L1CAM are enriched at developing hippocampal synapses. Activation of neuropsin expression upregulates the transcription and cleavage of L1CAM. Furthermore, blocking of neuropsin activity, as well as knockdown of L1CAM expression, significantly downregulates in vitro hippocampal synaptogenesis. Taken together, these findings provide evidence for the involvement of neuropsin activity-dependent regulation of L1CAM expression and cleavage in hippocampal synaptogenesis.
Subject(s)
Kallikreins , Neural Cell Adhesion Molecule L1 , Animals , Mice , Hippocampus/metabolism , Kallikreins/metabolism , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/metabolism , Neuronal Plasticity/physiology , Serine Proteases/metabolismABSTRACT
Recent advances in the field demonstrate the high diversity and complexity of endocytic pathways. In the current study, we focus on the endocytosis of L1CAM. This glycoprotein plays a major role in the development of the nervous system, and is involved in cancer development and is associated with metastases and poor prognosis. Two L1CAM isoforms are subject to endocytosis: isoform 1, described as a clathrin-mediated cargo; isoform 2, whose endocytosis has never been studied. Deciphering the molecular machinery of isoform 2 internalisation should contribute to a better understanding of its pathophysiological role. First, we demonstrated in our cellular context that both isoforms of L1CAM are mainly a clathrin-independent cargo, which was not expected for isoform 1. Second, the mechanism of L1CAM endocytosis is specifically mediated by the N-BAR domain protein endophilin-A3. Third, we discovered PSTPIP1, an F-BAR domain protein, as a novel actor in this endocytic process. Finally, we identified galectins as endocytic partners and negative regulators of L1CAM endocytosis. In summary, the interplay of the BAR proteins endophilin-A3 and PSTPIP1, and galectins fine tune the clathrin-independent endocytosis of L1CAM.
Subject(s)
Clathrin , Neural Cell Adhesion Molecule L1 , Clathrin/metabolism , Protein Isoforms , Endocytosis/physiology , GalectinsABSTRACT
Centrosome amplification (CA) is a prominent feature of human cancers linked to tumorigenesis in vivo. Here, we report mechanistic contributions of CA induction alone to tumour architecture and extracellular matrix (ECM) remodelling. CA induction in non-tumorigenic breast cells MCF10A causes cell migration and invasion, with underlying disruption of epithelial cell-cell junction integrity and dysregulation of expression and subcellular localisation of cell junction proteins. CA also elevates expression of integrin ß-3, its binding partner fibronectin-1 and matrix metalloproteinase enzymes, promoting cell-ECM attachment, ECM degradation, and a migratory and invasive cell phenotype. Using a chicken embryo xenograft model for in vivo validation, we show that CA-induced (+CA) MCF10A cells invade into the chick mesodermal layer, with inflammatory cell infiltration and marked focal reactions between chorioallantoic membrane and cell graft. We also demonstrate a key role of small GTPase Rap-1 signalling through inhibition using GGTI-298, which blocked various CA-induced effects. These insights reveal that in normal cells, CA induction alone (without additional oncogenic alterations) is sufficient to confer early pro-tumorigenic changes within days, acting through Rap-1-dependent signalling to alter cell-cell contacts and ECM disruption.
Subject(s)
Breast Neoplasms , Neoplasms , Chick Embryo , Humans , Animals , Female , Chickens , Neoplasms/metabolism , Signal Transduction , Cell Movement , Centrosome/metabolism , Cell Line, Tumor , Breast Neoplasms/geneticsABSTRACT
Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIß (CaMKIIß). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIß, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.
Subject(s)
Cell Death , Neurons , Synapses , Animals , Male , Mice , Rats , Calpain/metabolism , Cells, Cultured , Cysteine Proteinase Inhibitors/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neurons/pathology , Neurons/physiology , Neuroprotection , Proteome/analysis , Rats, Wistar , Stroke/pathology , Synapses/pathology , Synapses/physiologyABSTRACT
Krüppel-like factor 12 (KLF12) has been characterized as a transcriptional repressor, and previous studies have unveiled its roles in angiogenesis, neural tube defect, and natural killer (NK) cell proliferation. However, the contribution of KLF12 to cancer treatment remains undefined. Here, we show that KLF12 is downregulated in various cancer types, and KLF12 downregulation promotes cisplatin resistance and cancer metastasis in esophageal squamous cell carcinoma (ESCC). Mechanistically, KLF12 binds to the promoters of L1 Cell Adhesion Molecule (L1CAM) and represses its expression. Depletion of L1CAM abrogates cisplatin resistance and cancer metastasis caused by KLF12 loss. Moreover, the E3 ubiquitin ligase tripartite motif-containing 27 (TRIM27) binds to the N-terminal region of KLF12 and ubiquitinates KLF12 at K326 via K33-linked polyubiquitination. Notably, TRIM27 depletion enhances the transcriptional activity of KLF12 and consequently inhibits L1CAM expression. Overall, our study elucidated a novel regulatory mechanism involving TRIM27, KLF12 and L1CAM, which plays a substantial role in cisplatin resistance and cancer metastasis in ESCC. Targeting these genes could be a promising approach for ESCC treatment.
Subject(s)
Cisplatin , Drug Resistance, Neoplasm , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Kruppel-Like Transcription Factors , Neural Cell Adhesion Molecule L1 , Humans , Cisplatin/pharmacology , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Neural Cell Adhesion Molecule L1/metabolism , Neural Cell Adhesion Molecule L1/genetics , Cell Line, Tumor , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasm Metastasis , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination/drug effects , Mice , Cell Proliferation/drug effects , Tripartite Motif Proteins , DNA-Binding Proteins , Nuclear ProteinsABSTRACT
Molecular pathways that intrinsically regulate neuronal maintenance are poorly understood, but rare pathogenic mutations that underlie neurodegenerative disease can offer important insights into the mechanisms that facilitate lifelong neuronal function. Here, we leverage a rat model to demonstrate directly that the TFG p.R106C variant implicated previously in complicated forms of hereditary spastic paraplegia (HSP) underlies progressive spastic paraparesis with accompanying ventriculomegaly and thinning of the corpus callosum, consistent with disease phenotypes identified in adolescent patients. Analyses of primary cortical neurons obtained from CRISPR-Cas9-edited animals reveal a kinetic delay in biosynthetic secretory protein transport from the endoplasmic reticulum (ER), in agreement with prior induced pluripotent stem cell-based studies. Moreover, we identify an unexpected role for TFG in the trafficking of Rab4A-positive recycling endosomes specifically within axons and dendrites. Impaired TFG function compromises the transport of at least a subset of endosomal cargoes, which we show results in down-regulated inhibitory receptor signaling that may contribute to excitation-inhibition imbalances. In contrast, the morphology and trafficking of other organelles, including mitochondria and lysosomes, are unaffected by the TFG p.R106C mutation. Our findings demonstrate a multifaceted role for TFG in secretory and endosomal protein sorting that is unique to cells of the central nervous system and highlight the importance of these pathways to maintenance of corticospinal tract motor neurons.
Subject(s)
Endosomes , Motor Neurons , Protein Transport , Animals , Rats , Endoplasmic Reticulum/metabolism , Endosomes/metabolism , Motor Neurons/metabolism , Neurodegenerative Diseases/metabolism , Proteins/metabolism , Spastic Paraplegia, Hereditary/metabolismABSTRACT
Calmodulin (CaM) is a Ca2+ sensor protein found in all eukaryotic cells that regulates a large number of target proteins in a Ca2+ concentration-dependent manner. As a transient-type hub protein, it recognizes linear motifs of its targets, though for the Ca2+-dependent binding, no consensus sequence was identified. Its complex with melittin, a major component of bee venom, is often used as a model system of protein-protein complexes. Yet, the structural aspects of the binding are not well understood, as only diverse, low-resolution data are available concerning the association. We present the crystal structure of melittin in complex with Ca2+-saturated CaMs from two, evolutionarily distant species, Homo sapiens and Plasmodium falciparum, representing three binding modes of the peptide. Results-augmented by molecular dynamics simulations-indicate that multiple binding modes can exist for CaM-melittin complexes, as an intrinsic characteristic of the binding. While the helical structure of melittin remains, swapping of its salt bridges and partial unfolding of its C-terminal segment can occur. In contrast to the classical way of target recognition by CaM, we found that different sets of residues can anchor at the hydrophobic pockets of CaM, which were considered as main recognition sites. Finally, the nanomolar binding affinity of the CaM-melittin complex is created by an ensemble of arrangements of similar stability-tight binding is achieved not by optimized specific interactions but by simultaneously satisfying less optimal interaction patterns in co-existing different conformers.
Subject(s)
Calmodulin , Melitten , Models, Molecular , Amino Acid Sequence , Binding Sites , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Melitten/chemistry , Melitten/metabolism , Protein Binding , Humans , Plasmodium falciparum , Protein Structure, Quaternary , Molecular Docking SimulationABSTRACT
BACKGROUND: The co-occurrence of C4 and CAM photosynthesis in a single species seems to be unusual and rare. This is likely due to the difficulty in effectively co-regulating both pathways. Here, we conducted a comparative transcriptomic analysis of leaves and cotyledons of the C4-like species Sesuvium sesuvioides (Aizoaceae) using RNA-seq. RESULTS: When compared to cotyledons, phosphoenolpyruvate carboxylase 4 (PEPC4) and some key C4 genes were found to be up-regulated in leaves. During the day, the expression of NADP-dependent malic enzyme (NADP-ME) was significantly higher in cotyledons than in leaves. The titratable acidity confirmed higher acidity in the morning than in the previous evening indicating the induction of weak CAM in cotyledons by environmental conditions. Comparison of the leaves of S. sesuvioides (C4-like) and S. portulacastrum (C3) revealed that PEPC1 was significantly higher in S. sesuvioides, while PEPC3 and PEPC4 were up-regulated in S. portulacastrum. Finally, potential key regulatory elements involved in the C4-like and CAM pathways were identified. CONCLUSIONS: These findings provide a new species in which C4-like and CAM co-occur and raise the question if this phenomenon is indeed so rare or just hard to detect and probably more common in succulent C4 lineages.
Subject(s)
Aizoaceae , Cotyledon , Gene Expression Profiling , Photosynthesis , Plant Leaves , Cotyledon/genetics , Cotyledon/metabolism , Plant Leaves/metabolism , Plant Leaves/genetics , Photosynthesis/genetics , Aizoaceae/genetics , Aizoaceae/metabolism , Gene Expression Regulation, Plant , Transcriptome , Malate Dehydrogenase/metabolism , Malate Dehydrogenase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Phosphoenolpyruvate Carboxylase/genetics , Plant Proteins/genetics , Plant Proteins/metabolismABSTRACT
BACKGROUND: MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS: We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS: We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION: Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.
Subject(s)
Demyelinating Diseases , Megalencephaly , Mice , Animals , Astrocytes/metabolism , Calcium/metabolism , Calmodulin/metabolism , Demyelinating Diseases/pathology , Mutation/genetics , Endoplasmic Reticulum/metabolism , Megalencephaly/metabolismABSTRACT
Eukaryotic cells use calcium ions (Ca2+) as second messengers, particularly in response to abiotic and biotic stresses. These signals are detected by Ca2+ sensor proteins, such as calmodulin (CaM), which regulate the downstream target proteins. Plants also possess many CaM-like proteins (CMLs), most of which remain unstudied. We recently demonstrated that Arabidopsis CML13 and CML14 interact with proteins containing isoleucine/glutamine (IQ) domains, including CaM-binding transcriptional activators (CAMTAs). Here, we show that CaM, CML13 and CML14 bind all six members of the Arabidopsis CAMTA family. Using a combination of in planta and in vitro protein-interaction assays, we tested 11 members of the CaM/CML family and demonstrated that only CaM, CML13 and CML14 bind to CAMTA IQ domains. CaM, CML13 and CML14 showed Ca2+-independent binding to the IQ region of CAMTA6 and CAMTA3, and CAMTA6 in vitro exhibited some specificity toward individual IQ domains within CAMTA6 in split-luciferase in planta assays. We show that cml13 mutants exhibited enhanced salinity tolerance during germination compared to wild-type plants, a phenotype similar to camta6 mutants. In contrast, plants overexpressing CML13-GFP or CML14-GFP in the wild-type background showed increased NaCl sensitivity. Under mannitol stress, cml13 mutants were more susceptible than camta6 mutants or wild-type plants. The phenotype of cml13 mutants could be rescued with the wild-type CML13 gene. Several salinity-marker genes under CAMTA6 control were similarly misregulated in both camta6 and cml13 mutants, further supporting a role for CML13 in CAMTA6 function. Collectively, our data suggest that CML13 and CML14 participate in abiotic stress signaling as CAMTA effectors.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Salinity , Transcription Factors/metabolism , Salt StressABSTRACT
BACKGROUND & AIMS: Functional cure for chronic hepatitis B (CHB) requires finite treatment. Two agents under investigation with the goal of achieving functional cure are the small-interfering RNA JNJ-73763989 (JNJ-3989) and the capsid assembly modulator JNJ-56136379 (JNJ-6379; bersacapavir). METHODS: REEF-2, a phase IIb, double-blind, placebo-controlled, randomized study, enrolled 130 nucleos(t)ide analogue (NA)-suppressed hepatitis B e-antigen (HBeAg)-negative patients with CHB who received JNJ-3989 (200 mg subcutaneously every 4 weeks) + JNJ-6379 (250 mg oral daily) + NA (oral daily; active arm) or placebos for JNJ-3989 and JNJ-6379 +active NA (control arm) for 48 weeks followed by 48 weeks off-treatment follow-up. RESULTS: At follow-up Week 24, no patients achieved the primary endpoint of functional cure (off-treatment hepatitis B surface antigen [HBsAg] seroclearance). No patients achieved functional cure at follow-up Week 48. There was a pronounced on-treatment reduction in mean HBsAg from baseline at Week 48 in the active arm vs. no decline in the control arm (1.89 vs. 0.06 log10 IU/ml; p = 0.001). At follow-up Week 48, reductions from baseline were >1 log10 IU/ml in 81.5% vs. 12.5% of patients in the active and control arms, respectively, and 38/81 (46.9%) patients in the active arm achieved HBsAg <100 IU/ml vs. 6/40 (15.0%) patients in the control arm. Off-treatment HBV DNA relapse and alanine aminotransferase increases were less frequent in the active arm, with 7/77 (9.1%) and 11/41 (26.8%) patients in the active and control arms, respectively, restarting NAs during follow-up. CONCLUSIONS: Finite 48-week treatment with JNJ-3989 + JNJ-6379 + NA resulted in fewer and less severe post-treatment HBV DNA increases and alanine aminotransferase flares, and a higher proportion of patients with off-treatment HBV DNA suppression, with or without HBsAg suppression, but did not result in functional cure. IMPACT AND IMPLICATIONS: Achieving a functional cure from chronic hepatitis B (CHB) with finite treatments is a major unmet medical need. The current study assessed the rate of functional cure and clinical outcome after controlled nucleos(t)ide analogue (NA) withdrawal in patients with low levels of HBsAg induced by 48 weeks of treatment with the small-interfering RNA JNJ-3989 and the capsid assembly modulator JNJ-6379 plus NA vs. patients who only received NA treatment. Though functional cure was not achieved by any patient in either arm, the 48-week treatment regimen of JNJ-3989, JNJ-6379, and NA did result in more patients achieving pronounced reductions in HBsAg, with clinically meaningful reductions maintained for up to 48 weeks off all treatments, as well as fewer off-treatment HBV DNA increases and alanine aminotransferase flares. These findings provide valuable insights for future studies investigating potential finite treatment options, while the reported efficacy and safety outcomes may be of interest to healthcare providers making treatment decisions for patients with NA-suppressed HBeAg-negative CHB. GOV IDENTIFIER: NCT04129554.
Subject(s)
Antiviral Agents , Hepatitis B, Chronic , Humans , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Male , Female , Double-Blind Method , Adult , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Middle Aged , Treatment Outcome , Hepatitis B Surface Antigens/blood , Hepatitis B virus/genetics , Hepatitis B virus/drug effects , Hepatitis B e Antigens/blood , Drug Therapy, Combination/methods , Nucleosides/administration & dosage , Nucleosides/therapeutic use , DNA, Viral/blood , DNA, Viral/analysisABSTRACT
Palpebral conjunctival hue alteration is used in non-invasive screening for anaemia, whereas it is a qualitative measure. This study constructed machine/deep learning models for predicting haemoglobin values using 150 palpebral conjunctival images taken by a smartphone. The median haemoglobin value was 13.1 g/dL, including 10 patients with <11 g/dL. A segmentation model using U-net was successfully constructed. The segmented images were subjected to non-convolutional neural network (CNN)-based and CNN-based regression models for predicting haemoglobin values. The correlation coefficients between the actual and predicted haemoglobin values were 0.38 and 0.44 in the non-CNN-based and CNN-based models, respectively. The sensitivity and specificity for anaemia detection were 13% and 98% for the non-CNN-based model and 20% and 99% for the CNN-based model. The performance of the CNN-based model did not improve with a mask layer guiding the model's attention towards the conjunctival regions, however, slightly improved with correction by the aspect ratio and exposure time of input images. The gradient-weighted class activation mapping heatmap indicated that the lower half area of the conjunctiva was crucial for haemoglobin value prediction. In conclusion, the CNN-based model had better results than the non-CNN-based model. The prediction accuracy would improve by using more input data with anaemia.
Subject(s)
Anemia , Conjunctiva , Deep Learning , Hemoglobins , Humans , Conjunctiva/pathology , Hemoglobins/analysis , Female , Male , Middle Aged , Anemia/diagnosis , Anemia/blood , Adult , AgedABSTRACT
Nephrogenic adenoma (NA) is a benign, reactive lesion seen predominantly in the urinary bladder and often associated with antecedent inflammation, instrumentation, or an operative history. Its histopathologic diversity can create diagnostic dilemmas and pathologists use morphologic evaluation along with available immunohistochemical (IHC) markers to navigate these challenges. IHC assays currently do not designate or specify NA's potential putative cell of origin. Leveraging single-cell RNA-sequencing technology, we nominated a principal (P) cell-collecting duct marker, L1 cell adhesion molecule (L1CAM), as a potential biomarker for NA. IHC characterization revealed L1CAM to be positive in all 35 (100%) patient samples of NA; negative expression was seen in the benign urothelium, benign prostatic glands, urothelial carcinoma (UCA) in situ, prostatic adenocarcinoma, majority of high-grade UCA, and metastatic UCA. In the study, we also used single-cell RNA sequencing to nominate a novel compendium of biomarkers specific for the proximal tubule, loop of Henle, and distal tubule (DT) (including P and intercalated cells), which can be used to perform nephronal mapping using RNA in situ hybridization and IHC technology. Employing this technique on NA we found enrichment of both the P-cell marker L1CAM and, the proximal tubule type-A and -B cell markers, PDZKI1P1 and PIGR, respectively. The cell-type markers for the intercalated cell of DTs (LINC01187 and FOXI1), and the loop of Henle (UMOD and IRX5), were found to be uniformly absent in NA. Overall, our findings show that based on cell type-specific implications of L1CAM expression, the shared expression pattern of L1CAM between DT P cells and NA. L1CAM expression will be of potential value in assisting surgical pathologists toward a diagnosis of NA in challenging patient samples.
Subject(s)
Adenoma , Biomarkers, Tumor , Neural Cell Adhesion Molecule L1 , Humans , Neural Cell Adhesion Molecule L1/analysis , Neural Cell Adhesion Molecule L1/metabolism , Neural Cell Adhesion Molecule L1/biosynthesis , Adenoma/pathology , Adenoma/metabolism , Male , Biomarkers, Tumor/analysis , Female , Aged , Middle Aged , Immunohistochemistry , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/genetics , Nephrons/pathology , Nephrons/metabolism , AdultABSTRACT
Renal low-grade oncocytic tumor (LOT) is a recently recognized renal cell neoplasm designated within the "other oncocytic tumors" category in the 2022 World Health Organization classification system. Although the clinicopathologic, immunohistochemical, and molecular features reported for LOT have been largely consistent, the data are relatively limited. The morphologic overlap between LOT and other low-grade oncocytic neoplasms, particularly eosinophilic chromophobe renal cell carcinoma (E-chRCC), remains a controversial area in renal tumor classification. To address this uncertainty, we characterized and compared large cohorts of LOT (n = 67) and E-chRCC (n = 69) and revealed notable differences between the 2 entities. Clinically, LOT predominantly affected women, whereas E-chRCC showed a male predilection. Histologically, although almost all LOTs were dominated by a small-nested pattern, E-chRCC mainly showed solid and tubular architectures. Molecular analysis revealed that 87% of LOT cases harbored mutations in the tuberous sclerosis complex (TSC)-mTOR complex 1 (mTORC1) pathway, most frequently in MTOR and RHEB genes; a subset of LOT cases had chromosomal 7 and 19q gains. In contrast, E-chRCC lacked mTORC1 mutations, and 60% of cases displayed chromosomal losses characteristic of chRCC. We also explored the cell of origin for LOT and identified L1 cell adhesion molecule (L1CAM), a collecting duct and connecting tubule principal cell marker, as a highly sensitive and specific ancillary test for differentiating LOT from E-chRCC. This distinctive L1CAM immunohistochemical labeling suggests the principal cells as the cell of origin for LOT, unlike the intercalated cell origin of E-chRCC and oncocytoma. The ultrastructural analysis of LOT showed normal-appearing mitochondria and intracytoplasmic lumina with microvilli, different from what has been described for chRCC. Our study further supports LOT as a unique entity with a benign clinical course. Based on the likely cell of origin and its clinicopathologic characteristics, we propose that changing the nomenclature of LOT to "Oncocytic Principal Cell Adenoma of the Kidney" may be a better way to define and describe this entity.
Subject(s)
Adenoma, Oxyphilic , Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Neural Cell Adhesion Molecule L1 , Humans , Kidney Neoplasms/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/chemistry , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/chemistry , Female , Male , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/genetics , Neural Cell Adhesion Molecule L1/genetics , Neural Cell Adhesion Molecule L1/analysis , Neural Cell Adhesion Molecule L1/metabolism , Aged , Adult , Adenoma, Oxyphilic/pathology , Adenoma, Oxyphilic/genetics , Diagnosis, Differential , Aged, 80 and over , Immunohistochemistry , Neoplasm Grading , MutationABSTRACT
Crassulacean acid metabolism (CAM) leaves are characterized by nocturnal acidification and diurnal deacidification processes related with the timed actions of phosphoenolpyruvate carboxylase and Rubisco, respectively. How CAM leaves manage cytosolic proton homeostasis, particularly when facing massive diurnal proton effluxes from the vacuole, remains unclear. A 12-phase flux balance analysis (FBA) model was constructed for a mature malic enzyme-type CAM mesophyll cell in order to predict diel kinetics of intracellular proton fluxes. The charge- and proton-balanced FBA model identified the mitochondrial phosphate carrier (PiC, Pi/H+ symport), which provides Pi to the matrix to sustain ATP biosynthesis, as a major consumer of cytosolic protons during daytime (> 50%). The delivery of Pi to the mitochondrion, co-transported with protons, is required for oxidative phosphorylation and allows sufficient ATP to be synthesized to meet the high energy demand during CAM Phase III. Additionally, the model predicts that mitochondrial pyruvate originating from decarboxylation of malate is exclusively exported to the cytosol, probably via a pyruvate channel mechanism, to fuel gluconeogenesis. In this biochemical cycle, glyceraldehyde 3-phosphate dehydrogenase (GAPDH) acts as another important cytosolic proton consumer. Overall, our findings emphasize the importance of mitochondria in CAM and uncover a hitherto unappreciated role in metabolic proton homeostasis.
Subject(s)
Crassulacean Acid Metabolism , Homeostasis , Mitochondria , Models, Biological , Phosphates , Plant Leaves , Protons , Pyruvic Acid , Plant Leaves/metabolism , Mitochondria/metabolism , Pyruvic Acid/metabolism , Phosphates/metabolism , Circadian Rhythm , Cytosol/metabolism , Malates/metabolism , Adenosine Triphosphate/metabolismABSTRACT
Somatic cell totipotency in plant regeneration represents the forefront of the compelling scientific puzzles and one of the most challenging problems in biology. How somatic embryogenic competence is achieved in regeneration remains elusive. Here, we discover uncharacterized organelle-based embryogenic differentiation processes of intracellular acquisition and intercellular transformation, and demonstrate the underlying regulatory system of somatic embryogenesis-associated lipid transfer protein (SELTP) and its interactor calmodulin1 (CAM1) in cotton as the pioneer crop for biotechnology application. The synergistic CAM1 and SELTP exhibit consistent dynamical amyloplast-plasmodesmata (PD) localization patterns but show opposite functional effects. CAM1 inhibits the effect of SELTP to regulate embryogenic differentiation for plant regeneration. It is noteworthy that callus grafting assay reflects intercellular trafficking of CAM1 through PD for embryogenic transformation. This work originally provides insight into the mechanisms responsible for embryogenic competence acquisition and transformation mediated by the Ca2+/CAM1-SELTP regulatory pathway, suggesting a principle for plant regeneration and cell/genetic engineering.
Subject(s)
Carrier Proteins , Plants , OrganellesABSTRACT
Coronavirus disease 2019 (COVID-19) associated mucormycosis (CAM) was reported predominantly from India during the second wave of COVID-19 and has a high mortality rate. The present study aims to understand the fungal community composition of the nasopharyngeal region of CAM-infected individuals and compare it with severe COVID-19 patients and healthy controls. The fungal community composition was decoded by analyzing the sequence homology of the internal transcribed spacer-2-(ITS-2) region of metagenomic DNA extracted from the upper respiratory samples. The alpha-diversity indices were found to be significantly altered in CAM patients (p < 0.05). Interestingly, a higher abundance of Candida africana, Candida haemuloni, Starmerella floris, and Starmerella lactiscondensi was observed exclusively in CAM patients. The interindividual changes in mycobiome composition were well supported by beta-diversity analysis (p < 0.05). The current study provides insights into the dysbiosis of the nasal mycobiome during CAM infection. In conclusion, our study shows that severe COVID-19 and CAM are associated with alteration in mycobiome as compared to healthy controls. However, the sequential alteration in the fungal flora which ultimately leads to the development of CAM needs to be addressed by future studies.