Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Autoimmun ; 144: 102986, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36639301

ABSTRACT

Recently, increased interest in the use of Tregs as adoptive cell therapy for the treatment of autoimmune diseases and transplant rejection had led to several advances in the field. However, Treg cell therapies, while constantly advancing, indiscriminately suppress the immune system without the permanent stabilization of certain diseases. Genetically modified Tregs hold great promise towards solving these problems, but, challenges in identifying the most potent Treg subtype, accompanied by the ambiguity involved in identifying the optimal Treg source, along with its expansion and engineering in a clinical-grade setting remain paramount. This review highlights the recent advances in methodologies for the development of genetically engineered Treg cell-based treatments for autoimmune, inflammatory diseases, and organ rejection. Additionally, it provides a systematized guide to all the recent progress in the field and informs the readers of the feasibility and safety of engineered adoptive Treg cell therapy, with the aim to provide a framework for researchers involved in the development of engineered Tregs.


Subject(s)
Autoimmune Diseases , T-Lymphocytes, Regulatory , Humans , Graft Rejection/prevention & control , Immunotherapy , Immunotherapy, Adoptive/methods
2.
Mol Biol Rep ; 49(5): 4069-4078, 2022 May.
Article in English | MEDLINE | ID: mdl-35534581

ABSTRACT

Over the past years, adoptive cell therapy with regulatory T lymphocytes (Tregs) has captured the attention of many scientists and clinicians as a novel promising approach for treating a wide range of immune-mediated disorders. In particular, the robust immunosuppressive properties of these cells have been demonstrated to make them uniquely valuable for the treatment of autoimmune diseases. More recently, it has been brought to light that adoptive transfer of chimeric antigen receptor (CAR) Tregs (CAR-Tregs) can also serve a protective role against autoimmune-related disorders. Interestingly, a growing body of evidence indicates that the beneficial and therapeutic effects of antigen-specific CAR-Tregs surpass those of polyclonal Tregs in treating autoimmune conditions. Therefore, harnessing and adapting CAR technology to generate more specific and effective CAR-Tregs, both in terms of tissue localization and antigen recognition, may lay the foundations for the development of far more potent immunotherapeutic strategies for autoimmune-related disorders. Herein, we first highlight the major immunosuppressive abilities of CAR-Tregs and further summarize the current findings on their potential applications in treating autoimmune-related disorders. Then, we will attempt to address the practical challenges in the clinical use of CAR-Treg therapies.


Subject(s)
Autoimmune Diseases , Receptors, Chimeric Antigen , Autoimmune Diseases/therapy , Humans , Immunotherapy, Adoptive , T-Lymphocytes, Regulatory
3.
Cell Immunol ; 358: 104216, 2020 12.
Article in English | MEDLINE | ID: mdl-32987195

ABSTRACT

Although protein replacement therapy provides effective treatment for hemophilia A patients, about a third of severe patients develop neutralizing inhibitor antibodies to factor VIII. Adoptive transfer of regulatory T cells (Tregs) has shown promise in treating unwanted immune responses. In previous studies, transferred polyclonal Tregs ameliorated the anti-factor VIII immune responses in hemophilia A mice. In addition, factor VIII-primed Tregs demonstrated increased suppressive function. However, antigen-specific Tregs are a small fraction of the total lymphocyte population. To generate large numbers of factor VIII-specific Tregs, the more abundant murine primary CD4+ T cells were lentivirally transduced ex vivo to express Foxp3 and a chimeric antigen receptor specific to factor VIII (F8CAR). Transduced cells significantly inhibited the proliferation of factor VIII-specific effector T cells in suppression assays. To monitor the suppressive function of the transduced chimeric antigen receptor expressing T cells in vivo, engineered CD4+CD25+Foxp3+F8CAR-Tregs were sorted and adoptively transferred into hemophilia A mice that are treated with hydrodynamically injected factor VIII plasmid. Mice receiving engineered F8CAR-Tregs showed maintenance of factor VIII clotting activity and did not develop anti-factor VIII inhibitors, while control CD4+T cell or PBS recipient mice developed inhibitors and had a sharp decrease in factor VIII activity. These results show that CD4+ cells lentivirally transduced to express Foxp3 and F8CAR can promote factor VIII tolerance in a murine model. With further development and testing, this approach could potentially be applied to human hemophilia patients.


Subject(s)
Factor VIII/immunology , Forkhead Transcription Factors/immunology , Hemophilia A/immunology , Hemophilia A/therapy , Immunotherapy, Adoptive/methods , T-Lymphocytes, Regulatory/transplantation , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , Factor VIII/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Genetic Therapy/methods , HEK293 Cells , Hemophilia A/metabolism , Humans , Immune Tolerance/immunology , Male , Mice , Mice, Inbred C57BL , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
4.
Cell Metab ; 36(2): 229-239, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38218187

ABSTRACT

Tissue regulatory T cells (Tregs) exert pivotal functions in both immune and metabolic regulation, maintaining local tissue homeostasis, integrity, and function. Accordingly, Tregs play a crucial role in controlling obesity-induced inflammation and supporting efficient muscle function and repair. Depending on the tissue context, Tregs are characterized by unique transcriptomes, growth, and survival factors and T cell receptor (TCR) repertoires. This functional specialization offers the potential to selectively target context-specific Treg populations, tailoring therapeutic strategies to specific niches, thereby minimizing potential side effects. Here, we discuss challenges and perspectives for niche-specific Treg targeting, which holds promise for highly efficient and precise medical interventions to combat metabolic disease.


Subject(s)
Metabolic Diseases , T-Lymphocytes, Regulatory , Humans , Homeostasis , Metabolic Diseases/metabolism
5.
Semin Arthritis Rheum ; 67: 152479, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38810569

ABSTRACT

INTRODUCTION: Despite advancements in managing autoimmune rheumatic diseases (ARDs) with existing treatments, many patients still encounter challenges such as inadequate responses, difficulty in maintaining remission, and side effects. Chimeric Antigen Receptor (CAR) T-cell therapy, originally developed for cancer, has now emerged as a promising option for cases of refractory ARDs. METHODS: A search of the literature was conducted to compose a narrative review exploring the current evidence, potential safety, limitations, potential modifications, and future directions of CAR-T cells in ARDs. RESULTS: CAR-T cell therapy has been administered to patients with refractory ARDs, including systemic lupus erythematosus, antisynthetase syndrome, and systemic sclerosis, demonstrating significant improvement. Notable responses include enhanced clinical symptoms, reduced serum autoantibody titers, and sustained remissions in disease activity. Preclinical and in vitro studies using both animal and human samples also support the efficacy and elaborate on potential mechanisms of CAR-T cells against antineutrophil cytoplasmic antibody-associated vasculitis and rheumatoid arthritis. While cautious monitoring of adverse events, such as cytokine release syndrome, is crucial, the therapy appears to be highly tolerable. Nevertheless, challenges persist, including cost, durability due to potential CAR-T cell exhaustion, and manufacturing complexities, urging the development of innovative solutions to further enhance CAR-T cell therapy accessibility in ARDs. CONCLUSIONS: CAR-T cell therapy for refractory ARDs has demonstrated high effectiveness. While no significant warning signs are currently reported, achieving a balance between therapeutic efficacy and safety is vital in adapting CAR-T cell therapy for ARDs. Moreover, there is significant potential for technological advancements to enhance the delivery of this treatment to patients, thereby ensuring safer and more effective disease control for patients.


Subject(s)
Autoimmune Diseases , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Rheumatic Diseases , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/adverse effects , Rheumatic Diseases/therapy , Rheumatic Diseases/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Receptors, Chimeric Antigen/immunology
6.
Cancers (Basel) ; 15(24)2023 Dec 17.
Article in English | MEDLINE | ID: mdl-38136421

ABSTRACT

Regulatory T cells (Tregs) are fundamental to maintaining immune homeostasis by inhibiting immune responses to self-antigens and preventing the excessive activation of the immune system. Their functions extend beyond immune surveillance and subpopulations of tissue-resident Treg cells can also facilitate tissue repair and homeostasis. The unique ability to regulate aberrant immune responses has generated the concept of harnessing Tregs as a new cellular immunotherapy approach for reshaping undesired immune reactions in autoimmune diseases and allo-responses in transplantation to ultimately re-establish tolerance. However, a number of issues limit the broad clinical applicability of Treg adoptive immunotherapy, including the lack of antigen specificity, heterogeneity within the Treg population, poor persistence, functional Treg impairment in disease states, and in vivo plasticity that results in the loss of suppressive function. Although the early-phase clinical trials of Treg cell therapy have shown the feasibility and tolerability of the approach in several conditions, its efficacy has remained questionable. Leveraging the smart tools and platforms that have been successfully developed for primary T cell engineering in cancer, the field has now shifted towards "next-generation" adoptive Treg immunotherapy, where genetically modified Treg products with improved characteristics are being generated, as regards antigen specificity, function, persistence, and immunogenicity. Here, we review the state of the art on Treg adoptive immunotherapy and progress beyond it, while critically evaluating the hurdles and opportunities towards the materialization of Tregs as a living drug therapy for various inflammation states and the broad clinical translation of Treg therapeutics.

7.
HLA ; 99(6): 565-572, 2022 06.
Article in English | MEDLINE | ID: mdl-35233971

ABSTRACT

Preventing allograft rejection has been the main challenge of transplantation medicine since the discovery of immune responses against foreign HLA molecules in the mid-20th century. Prevention of rejection currently relies on immunosuppressive drugs, which lack antigen specificity and therefore increase the risk for infections and cancers. Adoptive cell therapy with donor-reactive regulatory T cells (Tregs) has progressively emerged as a promising approach to reduce the need for pan-immunosuppressive drugs and minimize morbidity and mortality in solid-organ transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate Tregs specific for donor HLA molecules and overcome the limitations of Tregs enrichment protocols based on repetitive stimulations with alloantigens. While this novel approach opens new possibilities to make Tregs therapy more feasible, it also creates additional challenges. It is essential to determine which source of therapeutic Tregs, CAR constructs, target alloantigens, safety strategies, patients and immunosuppressive regimens are optimal for the success of CAR Treg therapy. Here, we discuss unmet needs and strategies to bring donor-specific CAR Treg therapy to the clinic and make it as accessible as possible.


Subject(s)
Organ Transplantation , Receptors, Chimeric Antigen , Alleles , Humans , Immunosuppressive Agents/therapeutic use , Immunotherapy, Adoptive/methods , Isoantigens , Receptors, Chimeric Antigen/genetics , T-Lymphocytes, Regulatory
8.
Kidney Int Rep ; 7(6): 1258-1267, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35694562

ABSTRACT

Introduction: Cell therapy with regulatory T cells (Tregs) in solid organ transplantation is a promising approach for the prevention of graft rejection and induction of immunologic tolerance. Previous clinical studies have demonstrated the safety of Tregs in renal transplant recipients. Antigen-specific Tregs, such as chimeric antigen receptor (CAR)-Tregs, are expected to be more efficacious than polyclonal Tregs in homing to the target antigen. We have developed an autologous cell therapy (TX200-TR101) where a human leukocyte antigen (HLA) class I molecule A∗02 (HLA-A∗02)-CAR is introduced into autologous naive Tregs from a patient with HLA-A∗02-negative end-stage renal disease (ESRD) awaiting an HLA-A∗02-positive donor kidney. Methods: This article describes the design of the STEADFAST study, a first-in-human, phase I/IIa, multicenter, open-label, single-ascending dose, dose-ranging study to assess TX200-TR101 in living-donor renal transplant recipients. Up to 15 transplant recipients will receive TX200-TR101 and will be followed up for a total of 84 weeks post-transplant, alongside a control cohort of up to 6 transplant recipients. All transplant recipients will receive a standard of care immunosuppressive regimen, with the intent of intensified tapering of the regimen in the TX200-TR101 cohort. Results: The primary end point is the incidence and severity of treatment-emergent adverse events (AEs) within 28 days post-TX200-TR101 infusion. Other end points include additional safety parameters, clinical and renal outcome parameters, and the evaluation of biomarkers. Conclusion: The STEADFAST study represents the next frontier in adoptive cell therapies. TX200-TR101 holds great potential to prevent immune-mediated graft rejection and induce immunologic tolerance after HLA-A∗02-mismatched renal transplantation.

9.
Int Immunopharmacol ; 102: 108409, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34863655

ABSTRACT

Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.


Subject(s)
Autoimmune Diseases/therapy , Immunotherapy/methods , Receptors, Chimeric Antigen/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/immunology , Humans
10.
Front Immunol ; 12: 657768, 2021.
Article in English | MEDLINE | ID: mdl-33854514

ABSTRACT

Autoimmune diseases affect roughly 5-10% of the total population, with women affected more than men. The standard treatment for autoimmune or autoinflammatory diseases had long been immunosuppressive agents until the advent of immunomodulatory biologic drugs, which aimed at blocking inflammatory mediators, including proinflammatory cytokines. At the frontier of these biologic drugs are TNF-α blockers. These therapies inhibit the proinflammatory action of TNF-α in common autoimmune diseases such as rheumatoid arthritis, psoriasis, ulcerative colitis, and Crohn's disease. TNF-α blockade quickly became the "standard of care" for these autoimmune diseases due to their effectiveness in controlling disease and decreasing patient's adverse risk profiles compared to broad-spectrum immunosuppressive agents. However, anti-TNF-α therapies have limitations, including known adverse safety risk, loss of therapeutic efficacy due to drug resistance, and lack of efficacy in numerous autoimmune diseases, including multiple sclerosis. The next wave of truly transformative therapeutics should aspire to provide a cure by selectively suppressing pathogenic autoantigen-specific immune responses while leaving the rest of the immune system intact to control infectious diseases and malignancies. In this review, we will focus on three main areas of active research in immune tolerance. First, tolerogenic vaccines aiming at robust, lasting autoantigen-specific immune tolerance. Second, T cell therapies using Tregs (either polyclonal, antigen-specific, or genetically engineered to express chimeric antigen receptors) to establish active dominant immune tolerance or T cells (engineered to express chimeric antigen receptors) to delete pathogenic immune cells. Third, IL-2 therapies aiming at expanding immunosuppressive regulatory T cells in vivo.


Subject(s)
Immune Tolerance , Immunomodulation , Animals , Autoantigens/immunology , Autoimmune Diseases/etiology , Autoimmune Diseases/metabolism , Autoimmune Diseases/therapy , Cell- and Tissue-Based Therapy , Dendritic Cells/immunology , Dendritic Cells/metabolism , Humans , Immune Tolerance/drug effects , Immunologic Factors , Immunomodulation/drug effects , Immunotherapy/methods , Interleukin-2/metabolism , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Vaccines/administration & dosage , Vaccines/immunology
11.
Int Immunopharmacol ; 92: 107349, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33486323

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been widely used to treat hematological malignancies and genetic diseases. Graft-versus-host disease (GVHD) induced by donor immune system is the most common complication, contributing to severe morbidity and mortality after allo-HSCT. Currently, in terms of the prevention and treatment of GVHD, the major first-line therapeutic drugs are corticosteroids. However, most patients with systemic corticosteroid treatment are prone to steroid-refractory and poor prognosis. The use of several immune cells including Tregs, Bregs and mesenchymal stromal cells (MSCs) as an alternative on prevention or therapy of GVHD has been demonstrated to be beneficial. However, there are still many defects to a certain degree. Based on immune cells, it is promising to develop new and better approaches to improve GVHD. In this article, we will review the current advance of immune cells (Tregs, Bregs, MSCs) with negative regulation in the treatment of GVHD and present emerging strategies for the prevention and treatment of GVHD by other immune regulatory cells and chimeric antigen receptor (CAR) Tregs. In addition, these new therapeutic options need to be further evaluated in well-designed prospective multicenter trials to determine the optimal treatment for GVHD patients and improve their prognosis.


Subject(s)
Graft vs Host Disease/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Immunotherapy, Adoptive/methods , Mesenchymal Stem Cells/cytology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Graft vs Host Disease/etiology , Graft vs Host Disease/pathology , Humans , Immune Tolerance , Mesenchymal Stem Cells/immunology , Transplantation, Homologous
12.
Mol Ther Methods Clin Dev ; 23: 490-506, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34853797

ABSTRACT

Immune responses to adeno-associated virus (AAV) capsids limit the therapeutic potential of AAV gene therapy. Herein, we model clinical immune responses by generating AAV capsid-specific chimeric antigen receptor (AAV-CAR) T cells. We then modulate immune responses to AAV capsid with AAV-CAR regulatory T cells (Tregs). AAV-CAR Tregs in vitro display phenotypical Treg surface marker expression, and functional suppression of effector T cell proliferation and cytotoxicity. In mouse models, AAV-CAR Tregs mediated continued transgene expression from an immunogenic capsid, despite antibody responses, produced immunosuppressive cytokines, and decreased tissue inflammation. AAV-CAR Tregs are also able to bystander suppress immune responses to immunogenic transgenes similarly mediating continued transgene expression, producing immunosuppressive cytokines, and reducing tissue infiltration. Taken together, AAV-CAR T cells and AAV-CAR Tregs are directed and powerful immunosuppressive tools to model and modulate immune responses to AAV capsids and transgenes in the local environment.

13.
Trends Biotechnol ; 38(10): 1099-1112, 2020 10.
Article in English | MEDLINE | ID: mdl-31982150

ABSTRACT

Chimeric antigen receptor (CAR) technology and its application to regulatory T cells (Tregs) has garnered interest among researchers in the field of cell and gene therapy. Merging the benefits of CAR technology with Tregs offers a novel and promising therapeutic option for durable reshaping of undesired immune responses following solid organ or hematopoietic stem cell transplantation, as well as in immune-related disorders. However, major challenges remain for developing a standardized and robust good manufacturing practice (GMP)-compliant manufacturing process for CAR-Treg cells. We review current progress in the field and recommend ways to improve CAR-Treg manufacturing processes based on lessons learned from first-generation Treg therapeutics as well as from anticancer CAR-T cell development.


Subject(s)
Bioreactors , Cell Culture Techniques , Cell Engineering , Immunotherapy, Adoptive , T-Lymphocytes, Regulatory , Animals , Genetic Therapy , Humans , Mice , T-Lymphocytes, Regulatory/chemistry , T-Lymphocytes, Regulatory/cytology , T-Lymphocytes, Regulatory/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL