Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Int J Mol Sci ; 24(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36674829

ABSTRACT

Dent disease (DD1) is a rare tubulopathy caused by mutations in the CLCN5 gene. Glomerulosclerosis was recently reported in DD1 patients and ClC-5 protein was shown to be expressed in human podocytes. Nephrin and actin cytoskeleton play a key role for podocyte functions and podocyte endocytosis seems to be crucial for slit diaphragm regulation. The aim of this study was to analyze whether ClC-5 loss in podocytes might be a direct consequence of the glomerular damage in DD1 patients. Three DD1 kidney biopsies presenting focal global glomerulosclerosis and four control biopsies were analyzed by immunofluorescence (IF) for nephrin and podocalyxin, and by immunohistochemistry (IHC) for ClC-5. ClC-5 resulted as down-regulated in DD1 vs. control (CTRL) biopsies in both tubular and glomerular compartments (p < 0.01). A significant down-regulation of nephrin (p < 0.01) in DD1 vs. CTRL was demonstrated. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Caspase9) gene editing of CLCN5 in conditionally immortalized human podocytes was used to obtain clones with the stop codon mutation p.(R34Efs*14). We showed that ClC-5 and nephrin expression, analyzed by quantitative Reverse Transcription/Polymerase Chain Reaction (qRT/PCR) and In-Cell Western (ICW), was significantly downregulated in mutant clones compared to the wild type ones. In addition, F-actin staining with fluorescent phalloidin revealed actin derangements. Our results indicate that ClC-5 loss might alter podocyte function either through cytoskeleton disorganization or through impairment of nephrin recycling.


Subject(s)
Chloride Channels , Dent Disease , Glomerulosclerosis, Focal Segmental , Podocytes , Humans , Actins/genetics , Actins/metabolism , Dent Disease/genetics , Dent Disease/pathology , Glomerulosclerosis, Focal Segmental/metabolism , Kidney Glomerulus/metabolism , Podocytes/metabolism , Chloride Channels/metabolism
2.
Pediatr Dev Pathol ; 25(4): 397-403, 2022.
Article in English | MEDLINE | ID: mdl-35100899

ABSTRACT

The study aims to explore the clinicopathological features and whether the nonsense mutations of CLCN5 gene have effect on the renal expression of CLC-5 protein and megalin/cubilin complex in children with Dent-1 disease. The clinicopathological features and genetic examination of three patients with Dent-1 disease were investigated. The expression of CLC-5 and megalin/cubilin complex in renal tissues was detected by using immunohistochemistry method. Urinary albumin, α1-microglobulin, ß2-microglobulin, retinol binding protein, and calcium levels were measured by immunonephelometry. Urinary calcium and low molecular weight proteinuria (LMWP) were enhanced in three patients, and two presented with nephrotic range proteinuria. Focal glomerular obsolescence, minor tubulointerstitial injury, and focal calcification in corticomedullary junction were found in one patient. Nonsense mutations of CLCN5 gene from their mothers were identified in all three patients with Dent-1 disease; however, the expression of CLC-5 protein was not decreased in renal tubular cells. As the receptor complex of albumin and LMWP reabsorption, the expression of megalin/cubilin in the brush border of proximal tubules was decreased in Dent-1 patients. Even if the renal CLC-5 protein is expressed normally, the reduced expression of megalin/cubilin in the brush border of renal proximal tubules may be helpful to understand the physiopathology of Dent-1 disease with nonsense mutations of CLCN5 gene.


Subject(s)
Chloride Channels/metabolism , Codon, Nonsense , Dent Disease , Low Density Lipoprotein Receptor-Related Protein-2 , Albumins/genetics , Albumins/metabolism , Calcium/metabolism , Child , Codon, Nonsense/metabolism , Dent Disease/metabolism , Humans , Kidney Tubules, Proximal , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Proteinuria/metabolism , Receptors, Cell Surface
3.
Saudi Pharm J ; 30(2): 150-161, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35528850

ABSTRACT

Megalin receptor-mediated endocytosis participates a crucial role in gentamicin (GM) uptake, accumulation, and toxicity. In this study, we investigated the potential effects of montelukast (MLK) on megalin expression/endocytic function against GM nephrotoxicity. Male Wistar rats were administered GM (120 mg/kg; i.p.) daily in divided doses along 4 hr; 30 mg/kg/hr; for 7 days. MLK (30 mg/kg/day) was orally administered 7 days before and then concurrently with GM. The protein expressions of megalin and chloride channel-5 (ClC-5); one of the essential regulators of megalin endocytic function; were determined by Western blotting. Besides, the endocytic function of megalin was evaluated by the uptake of bovine serum albumin labeled with fluorescein isothiocyanate (FITC-BSA) into proximal tubular epithelial cells. Moreover, kidney function biomarkers (Cr, BUN, GFR, KIM-1, cystatin-C) and apoptosis markers (p-AKT1, cleaved caspase-3) were estimated. Co-treatment with MLK downregulated ClC-5 expression leading to reduced recycling of megalin to the plasma membrane, reduced expression, and so impaired endocytic function that was evidenced by reduced uptake of FITC-BSA in proximal tubular epithelial cells. The protein expression of the apoptotic executioner cleaved caspase-3 was significantly reduced, while that of the antiapoptotic p-AKT1 was elevated. These results were confirmed by the improvement of kidney functions and histological findings. Our data suggest that MLK could interfere with megalin expression/endocytic function that could be attributed to downregulation of ClC-5 protein expression. That eventually reduces renal cell apoptosis and improves kidney functions after GM administration without affecting the antibacterial activity of GM. Therefore, reduced expression of ClC-5 and interference with megalin expression/endocytic function by MLK could be an effective strategy against GM nephrotoxicity.

4.
Hum Mutat ; 42(5): 537-550, 2021 05.
Article in English | MEDLINE | ID: mdl-33600050

ABSTRACT

Mutations in the CLCN5 gene encoding the 2Cl- /1H+ exchanger ClC-5 are associated with Dent disease 1, an inherited renal disorder characterized by low-molecular-weight (LMW) proteinuria and hypercalciuria. In the kidney, ClC-5 is mostly localized in proximal tubule cells, where it is thought to play a key role in the endocytosis of LMW proteins. Here, we investigated the consequences of eight previously reported pathogenic missense mutations of ClC-5 surrounding the "proton glutamate" that serves as a crucial H+ -binding site for the exchanger. A complete loss of function was observed for a group of mutants that were either retained in the endoplasmic reticulum of HEK293T cells or unstainable at plasma membrane due to proteasomal degradation. In contrast, the currents measured for the second group of mutations in Xenopus laevis oocytes were reduced. Molecular dynamics simulations performed on a ClC-5 homology model demonstrated that such mutations might alter ClC-5 protonation by interfering with the water pathway. Analysis of clinical data from patients harboring these mutations demonstrated no phenotype/genotype correlation. This study reveals that mutations clustered in a crucial region of ClC-5 have diverse molecular consequences in patients with Dent disease 1, ranging from altered expression to defects in transport.


Subject(s)
Dent Disease , Protons , Chloride Channels/chemistry , Dent Disease/genetics , Dent Disease/metabolism , Genetic Diseases, X-Linked , Glutamic Acid , HEK293 Cells , Humans , Nephrolithiasis
5.
J Cell Mol Med ; 25(2): 1319-1322, 2021 01.
Article in English | MEDLINE | ID: mdl-33200471

ABSTRACT

Dent disease type 1 is caused by mutations in the CLCN5 gene that encodes CLC5, a 2Cl- /H+ exchanger. The CLC5 mutants that have been functionally analysed constitute three major classes based on protein expression, cellular localization and channel function. We tested two small molecules, 4-phenylbutyrate (4PBA) and its analogue 2-naphthoxyacetic acid (2-NOAA), for their effect on mutant CLC5 function and expression by whole-cell patch-clamp and Western blot, respectively. The expression and function of non-Class I CLC5 mutants that have reduced function could be restored by either treatment. Cell viability was reduced in cells treated with 2-NOAA. 4PBA is a FDA-approved drug for the treatment of urea cycle disorders and offers a potential therapy for Dent disease.


Subject(s)
Chemokine CCL5/genetics , Dent Disease/genetics , Mutation/genetics , Small Molecule Libraries/pharmacology , Cell Survival/drug effects , Chemokine CCL5/metabolism , Glycolates/pharmacology , HEK293 Cells , Humans , Phenylbutyrates/pharmacology
6.
J Biol Chem ; 295(6): 1464-1473, 2020 02 07.
Article in English | MEDLINE | ID: mdl-31852738

ABSTRACT

Dent disease 1 (DD1) is caused by mutations in the CLCN5 gene encoding a voltage-gated electrogenic nCl-/H+ exchanger ClC-5. Using ion-selective microelectrodes and Xenopus oocytes, here we studied Cl-/H+ coupling properties of WT ClC-5 and four DD1-associated variants (S244L, R345W, Q629*, and T657S), along with trafficking and localization of ClC-5. WT ClC-5 had a 2Cl-/H+ exchange ratio at a Vh of +40 mV with a [Cl-]out of 104 mm, but the transport direction did not reverse with a [Cl-]out of 5 mm, indicating that ClC-5-mediated exchange of two Cl- out for one H+ in is not permissible. We hypothesized that ClC-5 and H+-ATPase are functionally coupled during H+-ATPase-mediated endosomal acidification, crucial for ClC-5 activation by depolarizing endosomes. ClC-5 transport that provides three net negative charges appeared self-inhibitory because of ClC-5's voltage-gated properties, but shunt conductance facilitated further H+-ATPase-mediated endosomal acidification. Thus, an on-and-off "burst" of ClC-5 activity was crucial for preventing Cl- exit from endosomes. The subcellular distribution of the ClC-5:S244L variant was comparable with that of WT ClC-5, but the variant had a much slower Cl- and H+ transport and displayed an altered stoichiometry of 1.6:1. The ClC-5:R345W variant exhibited slightly higher Cl-/H+ transport than ClC-5:S244L, but co-localized with early endosomes, suggesting decreased ClC-5:R345W membrane trafficking is perhaps in a fully functional form. The truncated ClC-5:Q629* variant displayed the lowest Cl-/H+ exchange and was retained in the endoplasmic reticulum and cis-Golgi, but not in early endosomes, suggesting the nonsense mutation affects ClC-5 maturation and trafficking.


Subject(s)
Chloride Channels/genetics , Genetic Diseases, X-Linked/genetics , Nephrolithiasis/genetics , Point Mutation , Animals , Cell Line , Chloride Channels/analysis , Chloride Channels/metabolism , Chlorides/metabolism , Endosomes/genetics , Endosomes/metabolism , Genetic Diseases, X-Linked/metabolism , Humans , Hydrogen/metabolism , Ion Transport , Nephrolithiasis/metabolism , Protein Transport , Xenopus
7.
Ecotoxicol Environ Saf ; 225: 112762, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34530263

ABSTRACT

A diet high in sodium chloride (NaCl) can affect renal function damage and increase urinary calcium excretion, leading to bone loss. in renal tubules, Na-Cl co-transporter (NCC) and chloride channel 5 (CLC-5) are involved in regulating urinary calcium excretion. In addition, some cytokines, such as Bone morphogenetic protein 7 (BMP-7) and 1α-hydroxylase, are synthesized by renal tubules, which target on bone and play important roles on bone metabolism. However, the specific mechanisms between NaCl and these ion channels or cytokines still need investigations from many aspects. This study, in culture normal rat renal tubular epithelial NRK-52E cells, showed that high concentrations of NaCl significantly inhibited the cell viability and increased the cell apoptosis. High concentration of NaCl reduce bone mineral density (BMD), as demonstrated by the significantly increased mRNA and protein levels of NCC and osteopontin (OPN), but decreased the levels of CLC-5, BMP-7, and 1α-hydroxylase. In addition, we found that ovariectomized (OVX) rats on a high-salt diet for 12 weeks had altered levels of these indices in the renal cortices. Moreover, the BMD in fourth and fifth lumbar vertebra (LV4 and 5) and femurs were significantly decreased and bone microstructure was destroyed of these rats. We also demonstrated that high concentration of NaCl enhanced the inhibition of these cytokines which is beneficial to increase BMD, induced by modulating ion channels NCC and CLC-5. In conclusion, our results indicate that high concentration of NaCl reduce BMD by regulating ion channels NCC and CLC-5.


Subject(s)
Chlorides , Sodium Chloride , Animals , Bone Morphogenetic Protein 7 , Chloride Channels , Chlorides/toxicity , Mixed Function Oxygenases , Rats
8.
Int J Mol Sci ; 21(2)2020 01 14.
Article in English | MEDLINE | ID: mdl-31947599

ABSTRACT

Dent disease (DD), an X-linked renal tubulopathy, is mainly caused by loss-of-function mutations in CLCN5 (DD1) and OCRL genes. CLCN5 encodes the ClC-5 antiporter that in proximal tubules (PT) participates in the receptor-mediated endocytosis of low molecular weight proteins. Few studies have analyzed the PT expression of ClC-5 and of megalin and cubilin receptors in DD1 kidney biopsies. About 25% of DD cases lack mutations in either CLCN5 or OCRL genes (DD3), and no other disease genes have been discovered so far. Sanger sequencing was used for CLCN5 gene analysis in 158 unrelated males clinically suspected of having DD. The tubular expression of ClC-5, megalin, and cubilin was assessed by immunolabeling in 10 DD1 kidney biopsies. Whole exome sequencing (WES) was performed in eight DD3 patients. Twenty-three novel CLCN5 mutations were identified. ClC-5, megalin, and cubilin were significantly lower in DD1 than in control biopsies. The tubular expression of ClC-5 when detected was irrespective of the type of mutation. In four DD3 patients, WES revealed 12 potentially pathogenic variants in three novel genes (SLC17A1, SLC9A3, and PDZK1), and in three genes known to be associated with monogenic forms of renal proximal tubulopathies (SLC3A, LRP2, and CUBN). The supposed third Dent disease-causing gene was not discovered.


Subject(s)
Chloride Channels/genetics , Dent Disease/genetics , Dent Disease/pathology , Genetic Predisposition to Disease , Kidney Diseases/genetics , Kidney Diseases/pathology , Mutation , Biomarkers , Biopsy , DNA Mutational Analysis , Genetic Association Studies , Humans , Immunohistochemistry , Exome Sequencing
9.
J Cell Mol Med ; 23(11): 7132-7142, 2019 11.
Article in English | MEDLINE | ID: mdl-31472005

ABSTRACT

This review examines calcium and phosphate transport in the kidney through the lens of the rare X-linked genetic disorder Dent disease. Dent disease type 1 (DD1) is caused by mutations in the CLCN5 gene encoding ClC-5, a Cl- /H+ antiporter localized to early endosomes of the proximal tubule (PT). Phenotypic features commonly include low molecular weight proteinuria (LMWP), hypercalciuria, focal global sclerosis and chronic kidney disease; calcium nephrolithiasis, nephrocalcinosis and hypophosphatemic rickets are less commonly observed. Although it is not surprising that abnormal endosomal function and recycling in the PT could result in LMWP, it is less clear how ClC-5 dysfunction disturbs calcium and phosphate metabolism. It is known that the majority of calcium and phosphate transport occurs in PT cells, and PT endocytosis is essential for calcium and phosphorus reabsorption in this nephron segment. Evidence from ClC-5 KO models suggests that ClC-5 mediates parathormone endocytosis from tubular fluid. In addition, ClC-5 dysfunction alters expression of the sodium/proton exchanger NHE3 on the PT apical surface thus altering transcellular sodium movement and hence paracellular calcium reabsorption. A potential role for NHE3 dysfunction in the DD1 phenotype has never been investigated, either in DD models or in patients with DD1, even though patients with DD1 exhibit renal sodium and potassium wasting, especially when exposed to even a low dose of thiazide diuretic. Thus, insights from the rare disease DD1 may inform possible underlying mechanisms for the phenotype of hypercalciuria and idiopathic calcium stones.


Subject(s)
Calcium/metabolism , Dent Disease/pathology , Ion Channels/metabolism , Phosphates/metabolism , Animals , Dent Disease/metabolism , Humans , Ion Transport
10.
Hum Mutat ; 39(8): 1139-1149, 2018 08.
Article in English | MEDLINE | ID: mdl-29791050

ABSTRACT

Dent disease is an X-linked recessive renal tubular disorder characterized by low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, nephrocalcinosis, and progressive renal failure. Inactivating mutations of CLCN5, the gene encoding the 2Cl- /H+ exchanger ClC-5, have been reported in patients with Dent disease 1. In vivo studies in mice harboring an artificial mutation in the "gating glutamate" of ClC-5 (c.632A > C, p.Glu211Ala) and mathematical modeling suggest that endosomal chloride concentration could be an important parameter in endocytosis, rather than acidification as earlier hypothesized. Here, we described a novel pathogenic mutation affecting the "gating glutamate" of ClC-5 (c.632A>G, p.Glu211Gly) and investigated its molecular consequences. In HEK293T cells, the p.Glu211Gly ClC-5 mutant displayed unaltered N-glycosylation and normal plasma membrane and early endosomes localizations. In Xenopus laevis oocytes and HEK293T cells, we found that contrasting with wild-type ClC-5, the mutation abolished the outward rectification, the sensitivity to extracellular H+ and converted ClC-5 into a Cl- channel. Investigation of endosomal acidification in HEK293T cells using the pH-sensitive pHluorin2 probe showed that the luminal pH of cells expressing a wild-type or p.Glu211Gly ClC-5 was not significantly different. Our study further confirms that impaired acidification of endosomes is not the only parameter leading to defective endocytosis in Dent disease 1.


Subject(s)
Chloride Channels/genetics , Chloride Channels/metabolism , Endosomes/metabolism , Endosomes/pathology , Mutation/genetics , Animals , Dent Disease/genetics , Dent Disease/metabolism , Dent Disease/pathology , Endocytosis/genetics , Endocytosis/physiology , HEK293 Cells , Humans , Xenopus laevis
11.
Kidney Int ; 91(4): 842-855, 2017 04.
Article in English | MEDLINE | ID: mdl-28143656

ABSTRACT

Dent disease is a rare X-linked tubulopathy caused by mutations in the endosomal chloride-proton exchanger (ClC-5) resulting in defective receptor-mediated endocytosis and severe proximal tubule dysfunction. Bone marrow transplantation has recently been shown to preserve kidney function in cystinosis, a lysosomal storage disease causing proximal tubule dysfunction. Here we test the effects of bone marrow transplantation in Clcn5Y/- mice, a faithful model for Dent disease. Transplantation of wild-type bone marrow in Clcn5Y/- mice significantly improved proximal tubule dysfunction, with decreased low-molecular-weight proteinuria, glycosuria, calciuria, and polyuria four months after transplantation, compared to Clcn5Y/- mice transplanted with ClC-5 knockout bone marrow. Bone marrow-derived cells engrafted in the interstitium, surrounding proximal tubule cells, which showed a rescue of the apical expression of ClC-5 and megalin receptors. The improvement of proximal tubule dysfunction correlated with Clcn5 gene expression in kidneys of mice transplanted with wild-type bone marrow cells. Coculture of Clcn5Y/- proximal tubule cells with bone marrow-derived cells confirmed rescue of ClC-5 and megalin, resulting in improved endocytosis. Nanotubular extensions between the engrafted bone marrow-derived cells and proximal tubule cells were observed in vivo and in vitro. No rescue was found when the formation of the tunneling nanotubes was prevented by actin depolymerization or when cells were physically separated by transwell inserts. Thus, bone marrow transplantation may rescue the epithelial phenotype due to an inherited endosomal defect. Direct contacts between bone marrow-derived cells and diseased tubular cells play a key role in the rescue mechanism.


Subject(s)
Bone Marrow Transplantation , Chloride Channels/deficiency , Dent Disease/surgery , Kidney Tubules, Proximal/physiopathology , Animals , Cell Communication , Cells, Cultured , Chloride Channels/genetics , Coculture Techniques , Dent Disease/genetics , Dent Disease/metabolism , Dent Disease/physiopathology , Disease Models, Animal , Endocytosis , Genetic Predisposition to Disease , Glycosuria/genetics , Glycosuria/metabolism , Glycosuria/physiopathology , Glycosuria/prevention & control , Hypercalciuria/genetics , Hypercalciuria/metabolism , Hypercalciuria/physiopathology , Hypercalciuria/prevention & control , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Polyuria/genetics , Polyuria/metabolism , Polyuria/physiopathology , Polyuria/prevention & control , Proteinuria/genetics , Proteinuria/metabolism , Proteinuria/physiopathology , Proteinuria/prevention & control , Recovery of Function , Transplantation Chimera
12.
Pflugers Arch ; 468(7): 1183-1196, 2016 07.
Article in English | MEDLINE | ID: mdl-27044412

ABSTRACT

Dent's disease is characterized by defective endocytosis in renal proximal tubules (PTs) and caused by mutations in the 2Cl(-)/H(+) exchanger, CLC-5. However, the pathological role of endosomal acidification in endocytosis has recently come into question. To clarify the mechanism of pathogenesis for Dent's disease, we examined the effects of a novel gating glutamate mutation, E211Q, on CLC-5 functions and endosomal acidification. In Xenopus oocytes, wild-type (WT) CLC-5 showed outward-rectifying currents that were inhibited by extracellular acidosis, but E211Q and an artificial pure Cl(-) channel mutant, E211A, showed linear currents that were insensitive to extracellular acidosis. Moreover, depolarizing pulse trains induced a robust reduction in the surface pH of oocytes expressing WT CLC-5 but not E211Q or E211A, indicating that the E211Q mutant functions as a pure Cl(-) channel similar to E211A. In HEK293 cells, E211A and E211Q stimulated endosomal acidification and hypotonicity-inducible vacuolar-type H(+)-ATPase (V-ATPase) activation at the plasma membrane. However, the stimulatory effects of these mutants were reduced compared with WT CLC-5. Furthermore, gene silencing experiments confirmed the functional coupling between V-ATPase and CLC-5 at the plasma membrane of isolated mouse PTs. These results reveal for the first time that the conversion of CLC-5 from a 2Cl(-)/H(+) exchanger into a Cl(-) channel induces Dent's disease in humans. In addition, defective endosomal acidification as a result of insufficient V-ATPase activation may still be important in the pathogenesis of Dent's disease.


Subject(s)
Chloride Channels/genetics , Chloride Channels/metabolism , Dent Disease/metabolism , Mutation/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Cell Line , Cell Membrane/metabolism , Child , Dent Disease/genetics , Endocytosis/physiology , Female , HEK293 Cells , Homeostasis/physiology , Humans , Ion Transport/physiology , Kidney Tubules, Proximal/metabolism , Male , Oocytes/metabolism , Xenopus laevis/metabolism
13.
Hum Mutat ; 36(8): 743-52, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25907713

ABSTRACT

Dent disease is a rare X-linked tubulopathy characterized by low molecular weight proteinuria, hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressive renal failure, and variable manifestations of other proximal tubule dysfunctions. It often progresses over a few decades to chronic renal insufficiency, and therefore molecular characterization is important to allow appropriate genetic counseling. Two genetic subtypes have been described to date: Dent disease 1 is caused by mutations of the CLCN5 gene, coding for the chloride/proton exchanger ClC-5; and Dent disease 2 by mutations of the OCRL gene, coding for the inositol polyphosphate 5-phosphatase OCRL-1. Herein, we review previously reported mutations (n = 192) and their associated phenotype in 377 male patients with Dent disease 1 and describe phenotype and novel (n = 42) and recurrent mutations (n = 24) in a large cohort of 117 Dent disease 1 patients belonging to 90 families. The novel missense and in-frame mutations described were mapped onto a three-dimensional homology model of the ClC-5 protein. This analysis suggests that these mutations affect the dimerization process, helix stability, or transport. The phenotype of our cohort patients supports and extends the phenotype that has been reported in smaller studies.


Subject(s)
Chloride Channels/genetics , Dent Disease/genetics , Mutation , Animals , Chloride Channels/chemistry , Chloride Channels/metabolism , Cohort Studies , Dent Disease/metabolism , Genetic Association Studies , Humans , Male , Mice , Mice, Knockout , Pedigree
14.
Am J Physiol Renal Physiol ; 308(7): F784-92, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25587118

ABSTRACT

ClC-5 is a chloride/proton exchanger that plays an obligate role in albumin uptake by the renal proximal tubule. ClC-5 forms an endocytic complex with the albumin receptor megalin/cubilin. We have identified a novel ClC-5 binding partner, cytosolic aspartyl aminopeptidase (DNPEP; EC 3.4.11.21), that catalyzes the release of N-terminal aspartate/glutamate residues. The physiological role of DNPEP remains largely unresolved. Mass spectrometric analysis of proteins binding to the glutathione-S-transferase (GST)-ClC-5 C terminus identified DNPEP as an interacting partner. Coimmunoprecipitation confirmed that DNPEP and ClC-5 also associated in cells. Further experiments using purified GST-ClC-5 and His-DNPEP proteins demonstrated that the two proteins bound directly to each other. In opossum kidney (OK) cells, confocal immunofluorescence studies revealed that DNPEP colocalized with albumin-containing endocytic vesicles. Overexpression of wild-type DNPEP increased cell-surface levels of ClC-5 and albumin uptake. Analysis of DNPEP-immunoprecipitated products from rat kidney lysate identified ß-actin and tubulin, suggesting a role for DNPEP in cytoskeletal maintenance. A DNase I inhibition assay showed a significant decrease in the amount of G actin when DNPEP was overexpressed in OK cells, suggesting a role for DNPEP in stabilizing the cytoskeleton. DNPEP was not present in the urine of healthy rats; however, it was readily detected in the urine in rat models of mild and heavy proteinuria (diabetic nephropathy and anti-glomerular basement membrane disease, respectively). Urinary levels of DNPEP were found to correlate with the severity of proteinuria. Therefore, we have identified another key molecular component of the albumin endocytic machinery in the renal proximal tubule and describe a new role for DNPEP in stabilizing the actin cytoskeleton.


Subject(s)
Albumins/metabolism , Chloride Channels/metabolism , Endocytosis/physiology , Glutamyl Aminopeptidase/metabolism , Kidney Tubules, Proximal/metabolism , Actins/metabolism , Animals , Cell Membrane/metabolism , Cells, Cultured , Kidney/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Rats
15.
J Lipid Res ; 55(8): 1730-7, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24950692

ABSTRACT

Sphingosine-1-phosphate (S1P) mediates several cytoprotective functions of HDL. apoM acts as a S1P binding protein in HDL. Erythrocytes are the major source of S1P in plasma. After glomerular filtration, apoM is endocytosed in the proximal renal tubules. Human or murine HDL elicited time- and dose-dependent S1P efflux from erythrocytes. Compared with HDL of wild-type (wt) mice, S1P efflux was enhanced in the presence of HDL from apoM transgenic mice, but not diminished in the presence of HDL from apoM knockout (Apom(-/-)) mice. Artificially reconstituted and apoM-free HDL also effectively induced S1P efflux from erythrocytes. S1P and apoM were not measurable in the urine of wt mice. Apom(-/-) mice excreted significant amounts of S1P. apoM was detected in the urine of mice with defective tubular endocytosis because of knockout of the LDL receptor-related protein, chloride-proton exchanger ClC-5 (Clcn5(-/-)), or the cysteine transporter cystinosin. Urinary levels of S1P were significantly elevated in Clcn5(-/-) mice. In contrast to Apom(-/-) mice, these mice showed normal plasma concentrations for apoM and S1P. In conclusion, HDL facilitates S1P efflux from erythrocytes by both apoM-dependent and apoM-independent mechanisms. Moreover, apoM facilitates tubular reabsorption of S1P from the urine, however, with no impact on S1P plasma concentrations.


Subject(s)
Apolipoproteins M/metabolism , Erythrocytes/metabolism , Kidney Tubules/metabolism , Lysophospholipids/metabolism , Sphingosine/analogs & derivatives , Animals , Apolipoproteins M/genetics , Lipoproteins, HDL/genetics , Lipoproteins, HDL/metabolism , Lysophospholipids/genetics , Mice , Mice, Knockout , Sphingosine/genetics , Sphingosine/metabolism
16.
Gene ; 928: 148766, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39019097

ABSTRACT

Dent disease (DD) is a hereditary renal disorder characterized by low molecular weight (LMW) proteinuria and progressive renal failure. Inactivating mutations of the CLCN5 gene encoding the 2Cl-/H+exchanger ClC-5 have been identified in patients with DD type 1. ClC-5 is essentially expressed in proximal tubules (PT) where it is thought to play a role in maintaining an efficient endocytosis of LMW proteins. However, the exact pathological roles of ClC-5 in progressive dysfunctions observed in DD type 1 are still unclear. To address this issue, we designed a mouse model carrying the most representative type of ClC-5 missense mutations found in DD patients. These mice showed a characteristic DD type 1 phenotype accompanied by altered endo-lysosomal system and autophagy functions. With ageing, KI mice showed increased renal fibrosis, apoptosis and major changes in cell metabolic functions as already suggested in previous DD models. Furthermore, we made the interesting new discovery that the Lipocalin-2-24p3R pathway might be involved in the progression of the disease. These results suggest a crosstalk between the proximal and distal nephron in the pathogenesis mechanisms involved in DD with an initial PT impairment followed by the Lipocalin-2 internalisation and 24p3R overexpression in more distal segments of the nephron. This first animal model of DD carrying a pathogenic mutation of Clcn5 and our findings pave the way aimed at exploring therapeutic strategies to limit the consequences of ClC-5 disruption in patients with DD type 1 developing chronic kidney disease.


Subject(s)
Chloride Channels , Disease Models, Animal , Mice, Transgenic , Animals , Chloride Channels/genetics , Chloride Channels/metabolism , Mice , Dent Disease/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mutation, Missense , Humans , Lipocalin-2/genetics , Lipocalin-2/metabolism , Autophagy/genetics , Apoptosis/genetics , Genetic Diseases, X-Linked , Nephrolithiasis
17.
Bone Rep ; 21: 101763, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666049

ABSTRACT

Acid transport is required for bone synthesis by osteoblasts. The osteoblast basolateral surface extrudes acid by Na+/H+ exchange, but apical proton uptake is undefined. We found high expression of the Cl-/H+ exchanger ClC3 at the bone apical surface. In mammals ClC3 functions in intracellular vesicular chloride transport, but when we found Cl- dependency of H+ transport in osteoblast membranes, we queried whether ClC3 Cl-/H+ exchange functions in bone formation. We used ClC3 knockout animals, and closely-related ClC5 knockout animals: In vitro studies suggested that both ClC3 and ClC5 might support bone formation. Genotypes were confirmed by total exon sequences. Expression of ClC3, and to a lesser extent of ClC5, at osteoblast apical membranes was demonstrated by fluorescent antibody labeling and electron microscopy with nanometer gold labeling. Animals with ClC3 or ClC5 knockouts were viable. In ClC3 or ClC5 knockouts, bone formation decreased ~40 % by calcein and xylenol orange labeling in vivo. In very sensitive micro-computed tomography, ClC5 knockout reduced bone relative to wild type, consistent with effects of ClC3 knockout, but varied with specific histological parameters. Regrettably, ClC5-ClC3 double knockouts are not viable, suggesting that ClC3 or ClC5 activity are essential to life. We conclude that ClC3 has a direct role in bone formation with overlapping but probably slightly smaller effects of ClC5. The mechanism in mineral formation might include ClC H+ uptake, in contrast to ClC3 and ClC5 function in cell vesicles or other organs.

18.
Am J Physiol Renal Physiol ; 305(2): F216-26, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23637208

ABSTRACT

Cumulative epidemiological evidence indicates that the presence of microalbuminuria predicts a higher frequency of cardiovascular events, peripheral disease, and mortality in essential hypertension. Microalbuminuria may arise from increased glomerular permeability and/or reduced proximal tubular reabsorption of albumin by receptor-mediated endocytosis. This study aimed to evaluate the temporal pattern of urinary protein excretion and to test the hypothesis that progression of microalbuminuria is associated with decreased protein expression of critical components of the endocytic apparatus in the renal proximal tubule of spontaneously hypertensive rats (SHR). We found that urinary albumin excretion increased progressively with blood pressure in SHR from 6 to 21 wk of age. In addition, SDS-PAGE analysis of urinary proteins showed that microalbuminuric SHR virtually excreted proteins of the size of albumin or smaller (<70 kDa), typical of tubular proteinuria. Moreover, the protein abundance of the endocytic receptors megalin and cubilin as well as of the chloride channel ClC-5 progressively decreased in the renal cortex of SHR from 6 to 21 wk of age. Expression of the vacuolar H⁺-ATPase B2 subunit was also reduced in the renal cortex of 21-wk-old compared with both 6- and 14-wk-old SHR. Collectively, our study suggests that enhanced urinary protein excretion, especially of albumin, may be due, at least in part, to lower expression of key components of the apical endocytic apparatus in the renal proximal tubule. Finally, one may speculate that dysfunction of the apical endocytic pathway in the renal proximal tubule may contribute to the development of microalbuminuria in essential hypertension.


Subject(s)
Albuminuria/metabolism , Endocytosis , Hypertension/metabolism , Kidney Tubules, Proximal/metabolism , Albuminuria/pathology , Albuminuria/physiopathology , Animals , Blood Pressure , Disease Progression , Hypertension/pathology , Hypertension/physiopathology , Kidney Tubules, Proximal/pathology , Kidney Tubules, Proximal/physiopathology , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Male , Rats , Rats, Inbred SHR , Rats, Wistar , Receptors, Cell Surface/metabolism , Transferrin/metabolism
19.
J Nephrol ; 36(9): 2499-2506, 2023 12.
Article in English | MEDLINE | ID: mdl-37594671

ABSTRACT

BACKGROUND: Parietal epithelial cells are a heterogeneous population of cells located on Bowman's capsule. These cells are known to internalize albumin with a still undetermined mechanism, although albumin has been shown to induce phenotypic changes in parietal epithelial cells. Proximal tubular cells are the main actors in albumin handling via the macromolecular complex composed by ClC-5, megalin, and cubilin. This study investigated the role of ClC-5, megalin, and cubilin in the parietal epithelial cells of kidney biopsies from proteinuric lupus nephritis patients and control subjects and identified phenotypical changes occurring in the pathological milieu. METHODS: Immunohistochemistry and immunofluorescence analyses for ClC-5, megalin, cubilin, ANXA3, podocalyxin, CD24, CD44, HSA, and LTA marker were performed on 23 kidney biopsies from patients with Lupus Nephritis and 9 control biopsies (obtained from nephrectomies for renal cancer). RESULTS: Two sub-populations of hypertrophic parietal epithelial cells ANXA3+/Podocalyxin-/CD44-, both expressing ClC-5, megalin, and cubilin and located at the tubular pole, were identified and characterized: the first one, CD24+/HSA-/LTA- had characteristics of human adult parietal epithelial multipotent progenitors, the second one, CD24-/LTA+/HSA+ committed to become phenotypically proximal tubular cells. The number of glomeruli presenting hypertrophic parietal epithelial cells positive for ClC-5, megalin, and cubilin were significantly higher in lupus nephritis patients than in controls. CONCLUSIONS: Our results may provide further insight into the role of hypertrophic parietal epithelial cells located at the tubular pole and their possible involvement in protein endocytosis in lupus nephritis patients. These data also suggest that the presence of hypertrophic parietal epithelial cells in Bowman's capsule represents a potential resource for responding to protein overload observed in other glomerulonephritis.


Subject(s)
Low Density Lipoprotein Receptor-Related Protein-2 , Lupus Nephritis , Humans , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Kidney Tubules, Proximal , Proteinuria/etiology , Albumins/metabolism , Epithelial Cells/metabolism
20.
Life Sci ; 323: 121697, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37061126

ABSTRACT

AIM: this study aims to explore the effect of androgen receptor (AR) blockade by flutamide on some renal pathologic changes such as inflammation, apoptosis, and fibrosis in male rats. MAIN METHODS: Firstly, we investigated the potential effect of AR blockade on renal inflammatory intermediates including IL-1ß, IL-6, TNF-α, NF-Òšß proteins, and the renal gene expression of NF-Қß. Besides inflammation, we also assessed the apoptosis pathways including the caspases 3 & 9, mTOR, pAKT proteins, and BAX gene expression. Besides inflammation and apoptosis pathways, we also investigated the effect of androgen blockade on renal fibrosis intermediates including vimentin, TGFß-1, α-SMA, MMP-9, collagen type-III, collagen type-IV, and the renal expression of the col1A1 gene. Besides previous pathological pathways, we assessed the expression of chloride channel protein-5 (ClC-5), as an important regulator of many renal pathological changes. Finally, we assessed the impact of previous pathological changes on renal function at biochemical and pathological levels. KEY FINDINGS: We found that AR blockade by flutamide was associated with the down-regulation of renal inflammation, apoptosis, and fibrosis markers. It was associated with expression down-regulation of IL-1ß & IL-6, TNF-α, NF-Қß, caspases 3 & 9, mTOR, MMP-9, collagens, TGFß-1, and α-SMA. Away from down-regulation, we also found that AR blockade has upregulated ClC-5 and pAKT proteins. SIGNIFICANCE: AR is a major player in androgens-induced nephrotoxicity. AR blockade downregulates renal fibrosis, inflammation, and apoptosis pathways. It may be helpful as a strategy for alleviation of renal side effects associated with some drugs. However; this needs further investigations.


Subject(s)
Flutamide , Kidney Diseases , Rats , Male , Animals , Flutamide/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Matrix Metalloproteinase 9/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Interleukin-6/pharmacology , NF-kappa B/metabolism , Androgens/pharmacology , Fibrosis , Apoptosis , TOR Serine-Threonine Kinases , Inflammation/drug therapy , Caspases
SELECTION OF CITATIONS
SEARCH DETAIL