Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.362
Filter
Add more filters

Publication year range
1.
Cell ; 185(11): 1986-2005.e26, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35525246

ABSTRACT

Unlike copy number variants (CNVs), inversions remain an underexplored genetic variation class. By integrating multiple genomic technologies, we discover 729 inversions in 41 human genomes. Approximately 85% of inversions <2 kbp form by twin-priming during L1 retrotransposition; 80% of the larger inversions are balanced and affect twice as many nucleotides as CNVs. Balanced inversions show an excess of common variants, and 72% are flanked by segmental duplications (SDs) or retrotransposons. Since flanking repeats promote non-allelic homologous recombination, we developed complementary approaches to identify recurrent inversion formation. We describe 40 recurrent inversions encompassing 0.6% of the genome, showing inversion rates up to 2.7 × 10-4 per locus per generation. Recurrent inversions exhibit a sex-chromosomal bias and co-localize with genomic disorder critical regions. We propose that inversion recurrence results in an elevated number of heterozygous carriers and structural SD diversity, which increases mutability in the population and predisposes specific haplotypes to disease-causing CNVs.


Subject(s)
Chromosome Inversion , Segmental Duplications, Genomic , Chromosome Inversion/genetics , DNA Copy Number Variations/genetics , Genome, Human , Genomics , Humans
2.
Cell ; 168(5): 830-842.e7, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235197

ABSTRACT

De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.


Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Genomic Instability , Mutation , Chromosome Breakpoints , Chromosome Duplication , DNA Replication , Embryonic Development , Female , Gametogenesis , Humans , Male
3.
Am J Hum Genet ; 111(5): 863-876, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38565148

ABSTRACT

Copy number variants (CNVs) are significant contributors to the pathogenicity of rare genetic diseases and, with new innovative methods, can now reliably be identified from exome sequencing. Challenges still remain in accurate classification of CNV pathogenicity. CNV calling using GATK-gCNV was performed on exomes from a cohort of 6,633 families (15,759 individuals) with heterogeneous phenotypes and variable prior genetic testing collected at the Broad Institute Center for Mendelian Genomics of the Genomics Research to Elucidate the Genetics of Rare Diseases consortium and analyzed using the seqr platform. The addition of CNV detection to exome analysis identified causal CNVs for 171 families (2.6%). The estimated sizes of CNVs ranged from 293 bp to 80 Mb. The causal CNVs consisted of 140 deletions, 15 duplications, 3 suspected complex structural variants (SVs), 3 insertions, and 10 complex SVs, the latter two groups being identified by orthogonal confirmation methods. To classify CNV variant pathogenicity, we used the 2020 American College of Medical Genetics and Genomics/ClinGen CNV interpretation standards and developed additional criteria to evaluate allelic and functional data as well as variants on the X chromosome to further advance the framework. We interpreted 151 CNVs as likely pathogenic/pathogenic and 20 CNVs as high-interest variants of uncertain significance. Calling CNVs from existing exome data increases the diagnostic yield for individuals undiagnosed after standard testing approaches, providing a higher-resolution alternative to arrays at a fraction of the cost of genome sequencing. Our improvements to the classification approach advances the systematic framework to assess the pathogenicity of CNVs.


Subject(s)
DNA Copy Number Variations , Exome Sequencing , Exome , Rare Diseases , Humans , DNA Copy Number Variations/genetics , Rare Diseases/genetics , Rare Diseases/diagnosis , Exome/genetics , Male , Female , Cohort Studies , Genetic Testing/methods
4.
Am J Hum Genet ; 110(2): 300-313, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36706759

ABSTRACT

While extensively studied in clinical cohorts, the phenotypic consequences of 22q11.2 copy-number variants (CNVs) in the general population remain understudied. To address this gap, we performed a phenome-wide association scan in 405,324 unrelated UK Biobank (UKBB) participants by using CNV calls from genotyping array. We mapped 236 Human Phenotype Ontology terms linked to any of the 90 genes encompassed by the region to 170 UKBB traits and assessed the association between these traits and the copy-number state of 504 genotyping array probes in the region. We found significant associations for eight continuous and nine binary traits associated under different models (duplication-only, deletion-only, U-shape, and mirror models). The causal effect of the expression level of 22q11.2 genes on associated traits was assessed through transcriptome-wide Mendelian randomization (TWMR), revealing that increased expression of ARVCF increased BMI. Similarly, increased DGCR6 expression causally reduced mean platelet volume, in line with the corresponding CNV effect. Furthermore, cross-trait multivariable Mendelian randomization (MVMR) suggested a predominant role of genuine (horizontal) pleiotropy in the CNV region. Our findings show that within the general population, 22q11.2 CNVs are associated with traits previously linked to genes in the region, and duplications and deletions act upon traits in different fashions. We also showed that gain or loss of distinct segments within 22q11.2 may impact a trait under different association models. Our results have provided new insights to help further the understanding of the complex 22q11.2 region.


Subject(s)
DNA Copy Number Variations , Phenomics , Humans , DNA Copy Number Variations/genetics , Phenotype , Chromosomes, Human, Pair 22
5.
Proc Natl Acad Sci U S A ; 120(30): e2219897120, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37459550

ABSTRACT

The human microbiota affects critical cellular functions, although the responsible mechanism(s) is still poorly understood. In this regard, we previously showed that Mycoplasma fermentans DnaK, an HSP70 chaperone protein, hampers the activity of important cellular proteins responsible for DNA integrity. Here, we describe a novel DnaK knock-in mouse model generated in our laboratory to study the effect of M. fermentans DnaK expression in vivo. By using an array-based comparative genomic hybridization assay, we demonstrate that exposure to DnaK was associated with a higher number of DNA copy number variants (CNVs) indicative of unbalanced chromosomal alterations, together with reduced fertility and a high rate of fetal abnormalities. Consistent with their implication in genetic disorders, one of these CNVs caused a homozygous Grid2 deletion, resulting in an aberrant ataxic phenotype that recapitulates the extensive biallelic deletion in the Grid2 gene classified in humans as autosomal recessive spinocerebellar ataxia 18. Our data highlight a connection between components of the human urogenital tract microbiota, namely Mycoplasmas, and genetic abnormalities in the form of DNA CNVs, with obvious relevant medical, diagnostic, and therapeutic implications.


Subject(s)
DNA Copy Number Variations , Mycoplasma Infections , Mycoplasma fermentans/genetics , Homozygote , Mycoplasma Infections/genetics , Mycoplasma Infections/metabolism , Animals , Mice , Mice, Inbred C57BL
6.
Trends Genet ; 38(1): 45-58, 2022 01.
Article in English | MEDLINE | ID: mdl-34284881

ABSTRACT

Structural variation (SV) is a large difference (typically >100 bp) in the genomic structure of two genomes and includes both copy number variation and variation that does not change copy number of a genomic region, such as an inversion. Improved reference genomes, combined with widespread genome sequencing using short-read sequencing technology, and increasingly using long-read sequencing, have reignited interest in SV. Recent large-scale studies and functional focused analyses have highlighted the role of SV in human evolution. In this review, we highlight human-specific SVs involved in changes in the brain, population-specific SVs that affect response to the environment, including adaptation to diet and infectious diseases, and summarise the contribution of archaic hominin admixture to present-day human SV.


Subject(s)
DNA Copy Number Variations , Hominidae , Animals , DNA Copy Number Variations/genetics , Genome , Genome, Human/genetics , Genomic Structural Variation/genetics , Genomics , Hominidae/genetics , Humans , Sequence Analysis, DNA
7.
Am J Hum Genet ; 109(6): 1065-1076, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35609568

ABSTRACT

The human genome contains tens of thousands of large tandem repeats and hundreds of genes that show common and highly variable copy-number changes. Due to their large size and repetitive nature, these variable number tandem repeats (VNTRs) and multicopy genes are generally recalcitrant to standard genotyping approaches and, as a result, this class of variation is poorly characterized. However, several recent studies have demonstrated that copy-number variation of VNTRs can modify local gene expression, epigenetics, and human traits, indicating that many have a functional role. Here, using read depth from whole-genome sequencing to profile copy number, we report results of a phenome-wide association study (PheWAS) of VNTRs and multicopy genes in a discovery cohort of ∼35,000 samples, identifying 32 traits associated with copy number of 38 VNTRs and multicopy genes at 1% FDR. We replicated many of these signals in an independent cohort and observed that VNTRs showing trait associations were significantly enriched for expression QTLs with nearby genes, providing strong support for our results. Fine-mapping studies indicated that in the majority (∼90%) of cases, the VNTRs and multicopy genes we identified represent the causal variants underlying the observed associations. Furthermore, several lie in regions where prior SNV-based GWASs have failed to identify any significant associations with these traits. Our study indicates that copy number of VNTRs and multicopy genes contributes to diverse human traits and suggests that complex structural variants potentially explain some of the so-called "missing heritability" of SNV-based GWASs.


Subject(s)
DNA Copy Number Variations , Minisatellite Repeats , DNA Copy Number Variations/genetics , Genome, Human , Genome-Wide Association Study , Humans , Minisatellite Repeats/genetics , Phenotype
8.
Am J Hum Genet ; 109(4): 647-668, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35240056

ABSTRACT

The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , DNA Copy Number Variations/genetics , Female , Humans , Liver-Specific Organic Anion Transporter 1 , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide/genetics
9.
Am J Hum Genet ; 109(9): 1713-1723, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35948005

ABSTRACT

The leucine-rich glioma-inactivated (LGI) family consists of four highly conserved paralogous genes, LGI1-4, that are highly expressed in mammalian central and/or peripheral nervous systems. LGI1 antibodies are detected in subjects with autoimmune limbic encephalitis and peripheral nerve hyperexcitability syndromes (PNHSs) such as Isaacs and Morvan syndromes. Pathogenic variations of LGI1 and LGI4 are associated with neurological disorders as disease traits including familial temporal lobe epilepsy and neurogenic arthrogryposis multiplex congenita 1 with myelin defects, respectively. No human disease has been reported associated with either LGI2 or LGI3. We implemented exome sequencing and family-based genomics to identify individuals with deleterious variants in LGI3 and utilized GeneMatcher to connect practitioners and researchers worldwide to investigate the clinical and electrophysiological phenotype in affected subjects. We also generated Lgi3-null mice and performed peripheral nerve dissection and immunohistochemistry to examine the juxtaparanode LGI3 microarchitecture. As a result, we identified 16 individuals from eight unrelated families with loss-of-function (LoF) bi-allelic variants in LGI3. Deep phenotypic characterization showed LGI3 LoF causes a potentially clinically recognizable PNHS trait characterized by global developmental delay, intellectual disability, distal deformities with diminished reflexes, visible facial myokymia, and distinctive electromyographic features suggestive of motor nerve instability. Lgi3-null mice showed reduced and mis-localized Kv1 channel complexes in myelinated peripheral axons. Our data demonstrate bi-allelic LoF variants in LGI3 cause a clinically distinguishable disease trait of PNHS, most likely caused by disturbed Kv1 channel distribution in the absence of LGI3.


Subject(s)
Myokymia , Nerve Tissue Proteins , Animals , Autoantibodies , Axons , Genomics , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mammals/genetics , Mice , Nerve Tissue Proteins/genetics , Phenotype , Reverse Genetics
10.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38702887

ABSTRACT

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Subject(s)
Vesiculovirus , Animals , Humans , Mice , Vesiculovirus/genetics , Vesiculovirus/metabolism , Extracellular Vesicles/metabolism , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , HEK293 Cells , Viral Proteins/metabolism , Viral Proteins/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Drug Delivery Systems/methods , Cell Line, Tumor
11.
BMC Bioinformatics ; 25(1): 233, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982375

ABSTRACT

BACKGROUND: Structural variations play an important role in bacterial genomes. They can mediate genome adaptation quickly in response to the external environment and thus can also play a role in antibiotic resistance. The detection of structural variations in bacteria is challenging, and the recognition of even small rearrangements can be important. Even though most detection tools are aimed at and benchmarked on eukaryotic genomes, they can also be used on prokaryotic genomes. The key features of detection are the ability to detect small rearrangements and support haploid genomes. Because of the limiting performance of a single detection tool, combining the detection abilities of multiple tools can lead to more robust results. There are already available workflows for structural variation detection for long-reads technologies and for the detection of single-nucleotide variation and indels, both aimed at bacteria. Yet we are unaware of structural variations detection workflows for the short-reads sequencing platform. Motivated by this gap we created our workflow. Further, we were interested in increasing the detection performance and providing more robust results. RESULTS: We developed an open-source bioinformatics pipeline, ProcaryaSV, for the detection of structural variations in bacterial isolates from paired-end short sequencing reads. Multiple tools, starting with quality control and trimming of sequencing data, alignment to the reference genome, and multiple structural variation detection tools, are integrated. All the partial results are then processed and merged with an in-house merging algorithm. Compared with a single detection approach, ProcaryaSV has improved detection performance and is a reproducible easy-to-use tool. CONCLUSIONS: The ProcaryaSV pipeline provides an integrative approach to structural variation detection from paired-end next-generation sequencing of bacterial samples. It can be easily installed and used on Linux machines. It is publicly available on GitHub at https://github.com/robinjugas/ProcaryaSV .


Subject(s)
Genome, Bacterial , High-Throughput Nucleotide Sequencing , Software , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Bacteria/genetics
12.
BMC Genomics ; 25(1): 218, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413914

ABSTRACT

BACKGROUND: The majority of CAKUT-associated CNVs overlap at least one miRNA gene, thus affecting the cellular levels of the corresponding miRNA. We aimed to investigate the potency of restitution of CNV-affected miRNA levels to remediate the dysregulated expression of target genes involved in kidney physiology and development in vitro. METHODS: Heterozygous MIR484 knockout HEK293 and homozygous MIR185 knockout HEK293 cell lines were used as models depicting the deletion of the frequently affected miRNA genes by CAKUT-associated CNVs. After treatment with the corresponding miRNA mimics, the levels of the target genes have been compared to the non-targeting control treatment. For both investigated miRNAs, MDM2 and PKD1 were evaluated as common targets, while additional 3 genes were investigated as targets of each individual miRNA (NOTCH3, FIS1 and APAF1 as hsa-miR-484 targets and RHOA, ATF6 and CDC42 as hsa-miR-185-5p targets). RESULTS: Restitution of the corresponding miRNA levels in both knockout cell lines has induced a change in the mRNA levels of certain candidate target genes, thus confirming the potential to alleviate the CNV effect on miRNA expression. Intriguingly, HEK293 WT treatment with investigated miRNA mimics has triggered a more pronounced effect, thus suggesting the importance of miRNA interplay in different genomic contexts. CONCLUSIONS: Dysregulation of multiple mRNA targets mediated by CNV-affected miRNAs could represent the underlying mechanism behind the unresolved CAKUT occurrence and phenotypic variability observed in CAKUT patients. Characterizing miRNAs located in CNVs and their potential to become molecular targets could eventually help in understanding and improving the management of CAKUT.


Subject(s)
MicroRNAs , Urogenital Abnormalities , Vesico-Ureteral Reflux , Humans , Down-Regulation , HEK293 Cells , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Messenger
13.
BMC Genomics ; 25(1): 118, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38281030

ABSTRACT

Conifers are long-lived and slow-evolving, thus requiring effective defences against their fast-evolving insect natural enemies. The copy number variation (CNV) of two key acetophenone biosynthesis genes Ugt5/Ugt5b and ßglu-1 may provide a plausible mechanism underlying the constitutively variable defence in white spruce (Picea glauca) against its primary defoliator, spruce budworm. This study develops a long-insert sequence capture probe set (Picea_hung_p1.0) for quantifying copy number of ßglu-1-like, Ugt5-like genes and single-copy genes on 38 Norway spruce (Picea abies) and 40 P. glauca individuals from eight and nine provenances across Europe and North America respectively. We developed local assemblies (Piabi_c1.0 and Pigla_c.1.0), full-length transcriptomes (PIAB_v1 and PIGL_v1), and gene models to characterise the diversity of ßglu-1 and Ugt5 genes. We observed very large copy numbers of ßglu-1, with up to 381 copies in a single P. glauca individual. We observed among-provenance CNV of ßglu-1 in P. glauca but not P. abies. Ugt5b was predominantly single-copy in both species. This study generates critical hypotheses for testing the emergence and mechanism of extreme CNV, the dosage effect on phenotype, and the varying copy number of genes with the same pathway. We demonstrate new approaches to overcome experimental challenges in genomic research in conifer defences.


Subject(s)
Picea , Humans , Picea/genetics , Picea/metabolism , DNA Copy Number Variations , beta-Glucosidase/genetics , Genomics , Transcriptome
14.
BMC Genomics ; 25(1): 366, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622538

ABSTRACT

Large-scale copy number variants (CNVs) are structural alterations in the genome that involve the duplication or deletion of DNA segments, contributing to genetic diversity and playing a crucial role in the evolution and development of various diseases and disorders, as they can lead to the dosage imbalance of one or more genes. Massively parallel sequencing (MPS) has revolutionized the field of genetic analysis and contributed significantly to routine clinical diagnosis and screening. It offers a precise method for detecting CNVs with exceptional accuracy. In this context, a non-invasive prenatal test (NIPT) based on the sequencing of cell-free DNA (cfDNA) from pregnant women's plasma using a low-coverage whole genome MPS (WGS) approach represents a valuable source for population studies. Here, we analyzed genomic data of 12,732 pregnant women from the Slovak (9,230), Czech (1,583), and Hungarian (1,919) populations. We identified 5,062 CNVs ranging from 200 kbp and described their basic characteristics and differences between the subject populations. Our results suggest that re-analysis of sequencing data from routine WGS assays has the potential to obtain large-scale CNV population frequencies, which are not well known and may provide valuable information to support the classification and interpretation of this type of genetic variation. Furthermore, this could contribute to expanding knowledge about the central European genome without investing in additional laboratory work, as NIPTs are a relatively widely used screening method.


Subject(s)
Cell-Free Nucleic Acids , DNA Copy Number Variations , Pregnancy , Female , Humans , Prenatal Diagnosis/methods , Whole Genome Sequencing/methods , Genomics/methods , Genetic Testing
15.
Mol Biol Evol ; 40(8)2023 08 03.
Article in English | MEDLINE | ID: mdl-37479678

ABSTRACT

The Y chromosome is theorized to facilitate evolution of sexual dimorphism by accumulating sexually antagonistic loci, but empirical support is scarce. Due to the lack of recombination, Y chromosomes are prone to degenerative processes, which poses a constraint on their adaptive potential. Yet, in the seed beetle, Callosobruchus maculatus segregating Y linked variation affects male body size and thereby sexual size dimorphism (SSD). Here, we assemble C. maculatus sex chromosome sequences and identify molecular differences associated with Y-linked SSD variation. The assembled Y chromosome is largely euchromatic and contains over 400 genes, many of which are ampliconic with a mixed autosomal and X chromosome ancestry. Functional annotation suggests that the Y chromosome plays important roles in males beyond primary reproductive functions. Crucially, we find that, besides an autosomal copy of the gene target of rapamycin (TOR), males carry an additional TOR copy on the Y chromosome. TOR is a conserved regulator of growth across taxa, and our results suggest that a Y-linked TOR provides a male specific opportunity to alter body size. A comparison of Y haplotypes associated with male size difference uncovers a copy number variation for TOR, where the haplotype associated with decreased male size, and thereby increased sexual dimorphism, has two additional TOR copies. This suggests that sexual conflict over growth has been mitigated by autosome to Y translocation of TOR followed by gene duplications. Our results reveal that despite of suppressed recombination, the Y chromosome can harbor adaptive potential as a male-limited supergene.


Subject(s)
Coleoptera , DNA Copy Number Variations , Male , Animals , Coleoptera/genetics , Sex Characteristics , Y Chromosome , Seeds
16.
Curr Issues Mol Biol ; 46(5): 4832-4844, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38785559

ABSTRACT

Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive genetic defects in cortisol synthesis and shows elevated ACTH concentrations, which in turn has downstream effects. The most common variant of CAH, 21-hydroxylase deficiency (21OHD), is the result of pathogenic variants in the CYP21A2 gene and is one of the most common monogenic disorders. However, the genetics of 21OHD is complex and challenging. The CYP21A2 gene is located in the RCCX copy number variation (CNV), a complex, multiallelic, and tandem CNV in the major histocompatibility complex (MHC) class III region on chromosome 6 (band 6p21.3). Here, CYP21A2 and its pseudogene CYP21A1P are located 30 kb apart and share a high nucleotide homology of approximately 98% and 96% in exons and introns, respectively. This high-sequence homology facilitates large structural rearrangements, copy number changes, and gene conversion through intergenic recombination. There is a good genotype-phenotype correlation in 21OHD, and genotyping can be performed to confirm the clinical diagnosis, predict long-term outcomes, and determine genetic counseling. Thus, genotyping in CAH is clinically relevant but the interpretations can be challenging for non-initiated clinicians. Here, there are some concrete examples of how molecular diagnosis can sometimes require the use of multiple molecular strategies.

17.
Ann Hum Genet ; 88(2): 113-125, 2024 03.
Article in English | MEDLINE | ID: mdl-37807935

ABSTRACT

INTRODUCTION: Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics. MATERIALS AND METHODS: DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism. RESULTS: All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA. DISCUSSION: Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.


Subject(s)
Aneuploidy , DNA Copy Number Variations , Pregnancy , Female , Humans , Cost-Benefit Analysis , Whole Genome Sequencing/methods , DNA
18.
Clin Immunol ; 261: 110165, 2024 04.
Article in English | MEDLINE | ID: mdl-38423196

ABSTRACT

Mutations in NFkB pathway genes can cause inborn errors of immunity (IEI), with NFKB1 haploinsufficiency being a significant etiology for common variable immunodeficiency (CVID). Indeed, mutations in NFKB1 are found in 4 to 5% of in European and United States CVID cohorts, respectively; CVID representing almost » of IEI patients in European countries registries. This case study presents a 49-year-old patient with respiratory infections, chronic diarrhea, immune thrombocytopenia, hypogammaglobulinemia, and secondary lymphoma. Comprehensive genetic analysis, including high-throughput sequencing of 300 IEI-related genes and copy number variation analysis, identified a critical 2.6-kb deletion spanning the first untranslated exon and its upstream region. The region's importance was confirmed through genetic markers indicative of enhancers and promoters. The deletion was also found in the patient's brother, who displayed similar but milder symptoms. Functional analysis supported haploinsufficiency with reduced mRNA and protein expression in both patients. This case underscores the significance of copy number variation (CNV) analysis and targeting noncoding exons within custom gene panels, emphasizing the broader genomic approaches needed in medical genetics.


Subject(s)
Common Variable Immunodeficiency , Siblings , Male , Adult , Humans , Middle Aged , Haploinsufficiency/genetics , DNA Copy Number Variations , NF-kappa B/genetics , Common Variable Immunodeficiency/genetics , Regulatory Sequences, Nucleic Acid , NF-kappa B p50 Subunit/genetics
19.
Antimicrob Agents Chemother ; : e0161923, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712935

ABSTRACT

We used whole-genome sequencing to analyze a collection of 35 fluconazole-resistant and 7 susceptible Candida parapsilosis isolates together with coverage analysis and GWAS techniques to identify new mechanisms of fluconazole resistance. Phylogenetic analysis shows that although the collection is diverse, two persistent clinical lineages were identified. We identified copy number variation (CNV) of two genes, ERG11 and CDR1B, in resistant isolates. Two strains have a CNV at the ERG11 locus; the entire ORF is amplified in one, and only the promoter region is amplified in the other. We show that the annotated telomeric gene CDR1B is actually an artifactual in silico fusion of two highly similar neighboring CDR genes due to an assembly error in the C. parapsilosis CDC317 reference genome. We report highly variable copy numbers of the CDR1B region across the collection. Several strains have increased the expansion of the two genes into a tandem array of new chimeric genes. Other strains have experienced a deletion between the two genes creating a single gene with a reciprocal chimerism. We find translocations, duplications, and gene conversion across the CDR gene family in the C. parapsilosis species complex, showing that it is a highly dynamic family.

20.
Am J Hum Genet ; 108(8): 1409-1422, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34237280

ABSTRACT

Chromosomal aberrations including structural variations (SVs) are a major cause of human genetic diseases. Their detection in clinical routine still relies on standard cytogenetics. Drawbacks of these tests are a very low resolution (karyotyping) and the inability to detect balanced SVs or indicate the genomic localization and orientation of duplicated segments or insertions (copy number variant [CNV] microarrays). Here, we investigated the ability of optical genome mapping (OGM) to detect known constitutional chromosomal aberrations. Ultra-high-molecular-weight DNA was isolated from 85 blood or cultured cells and processed via OGM. A de novo genome assembly was performed followed by structural variant and CNV calling and annotation, and results were compared to known aberrations from standard-of-care tests (karyotype, FISH, and/or CNV microarray). In total, we analyzed 99 chromosomal aberrations, including seven aneuploidies, 19 deletions, 20 duplications, 34 translocations, six inversions, two insertions, six isochromosomes, one ring chromosome, and four complex rearrangements. Several of these variants encompass complex regions of the human genome involved in repeat-mediated microdeletion/microduplication syndromes. High-resolution OGM reached 100% concordance compared to standard assays for all aberrations with non-centromeric breakpoints. This proof-of-principle study demonstrates the ability of OGM to detect nearly all types of chromosomal aberrations. We also suggest suited filtering strategies to prioritize clinically relevant aberrations and discuss future improvements. These results highlight the potential for OGM to provide a cost-effective and easy-to-use alternative that would allow comprehensive detection of chromosomal aberrations and structural variants, which could give rise to an era of "next-generation cytogenetics."


Subject(s)
Chromosome Aberrations , Chromosome Disorders/diagnosis , Chromosome Mapping/methods , Cytogenetic Analysis/methods , DNA Copy Number Variations , Genome, Human , Microarray Analysis/methods , Chromosome Disorders/genetics , Humans , Karyotyping
SELECTION OF CITATIONS
SEARCH DETAIL