Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 496
Filter
1.
Cell Rep ; 43(8): 114592, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39110593

ABSTRACT

Vesicle-associated membrane protein (VAMP)-associated proteins (VAPs) are highly conserved endoplasmic reticulum (ER)-resident proteins that establish ER contacts with multiple membrane compartments in many eukaryotes. However, VAP-mediated membrane-tethering mechanisms remain ambiguous. Here, focusing on fission yeast ER-plasma membrane (PM) contact formation, using systematic interactome analyses and quantitative microscopy, we predict a non-VAP-protein direct binding-based ER-PM coupling. We further reveal that VAP-anionic phospholipid interactions may underlie ER-PM association and define the pH-responsive nature of VAP-tethered membrane contacts. Such conserved interactions with anionic phospholipids are generally defective in amyotrophic lateral sclerosis-associated human VAPB mutant. Moreover, we identify a conserved FFAT-like motif locating at the autoinhibitory hotspot of the essential PM proton pump Pma1. This modulatory VAP-Pma1 interaction appears crucial for pH homeostasis. We thus propose an ingenious strategy for maintaining intracellular pH by coupling Pma1 modulation with pH-sensory ER-PM contacts via VAP-mediated interactions.


Subject(s)
Cell Membrane , Endoplasmic Reticulum , Homeostasis , Schizosaccharomyces , Endoplasmic Reticulum/metabolism , Hydrogen-Ion Concentration , Cell Membrane/metabolism , Humans , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Vesicular Transport Proteins/metabolism , Vesicular Transport Proteins/genetics , Protein Binding , Membrane Proteins/metabolism , Phospholipids/metabolism , Mutation , Amyotrophic Lateral Sclerosis/metabolism
2.
Cell Rep ; 43(6): 114273, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38843397

ABSTRACT

Phosphoinositides (PtdIns) are a family of differentially phosphorylated lipid second messengers localized to the cytoplasmic leaflet of both plasma and intracellular membranes. Kinases and phosphatases can selectively modify the PtdIns composition of different cellular compartments, leading to the recruitment of specific binding proteins, which control cellular homeostasis and proliferation. Thus, while PtdIns affect cell growth and survival during interphase, they are also emerging as key drivers in multiple temporally defined membrane remodeling events of mitosis, like cell rounding, spindle orientation, cytokinesis, and abscission. In this review, we summarize and discuss what is known about PtdIns function during mitosis and how alterations in the production and removal of PtdIns can interfere with proper cell division.


Subject(s)
Mitosis , Phosphatidylinositols , Humans , Phosphatidylinositols/metabolism , Animals , Cytokinesis/physiology
3.
Cell Rep ; 43(8): 114571, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39093698

ABSTRACT

Rice stripe virus (RSV) establishes infection in the ovaries of its vector insect, Laodelphax striatellus. We demonstrate that RSV infection delays ovarian maturation by inhibiting membrane localization of the vitellogenin receptor (VgR), thereby reducing the vitellogenin (Vg) accumulation essential for egg development. We identify the host protein L. striatellus Rab1 protein (LsRab1), which directly interacts with RSV nucleocapsid protein (NP) within nurse cells. LsRab1 is required for VgR surface localization and ovarian Vg accumulation. RSV inhibits LsRab1 function through two mechanisms: NP binding LsRab1 prevents GTP binding, and NP binding LsRab1-GTP complexes stimulates GTP hydrolysis, forming an inactive LsRab1 form. Through this dual inhibition, RSV infection prevents LsRab1 from facilitating VgR trafficking to the cell membrane, leading to inefficient Vg uptake. The Vg-VgR pathway is present in most oviparous animals, and the mechanisms detailed here provide insights into the vertical transmission of other insect-transmitted viruses of medical and agricultural importance.


Subject(s)
Receptors, Cell Surface , Tenuivirus , rab1 GTP-Binding Proteins , Animals , Female , rab1 GTP-Binding Proteins/metabolism , Tenuivirus/physiology , Tenuivirus/metabolism , Receptors, Cell Surface/metabolism , Egg Proteins/metabolism , Insect Proteins/metabolism , Insect Proteins/genetics , Vitellogenins/metabolism , Nucleocapsid Proteins/metabolism , Hemiptera/virology , Hemiptera/metabolism , Ovary/virology , Ovary/metabolism , Protein Binding , Protein Transport , Cell Membrane/metabolism , Cell Membrane/virology , Plant Diseases/virology
4.
Cell Rep Methods ; 4(7): 100821, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39013362

ABSTRACT

Molecular tension sensors are central tools for mechanobiology studies but have limitations in interpretation. Reporting in Cell Reports Methods, Shoyer et al. discover that fluorescent protein photoswitching in concert with sensor extension may expand the use and interpretation of common force-sensing tools.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Biosensing Techniques/instrumentation
5.
Cell Rep ; 43(7): 114507, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39003742

ABSTRACT

The oxidative-stress-related protein Kelch-like ECH-associated protein 1 (KEAP1) is a substrate articulator of E3 ubiquitin ligase, which plays an important role in the ubiquitination modification of proteins. However, the function of KEAP1 in breast cancer and its impact on the survival of patients with breast cancer remain unclear. Our study demonstrates that KEAP1, a positive prognostic factor, plays a crucial role in regulating cell proliferation, apoptosis, and cell cycle transition in breast cancer. We investigate the underlying mechanism using human tumor tissues, high-throughput detection technology, and a mouse xenograft tumor model. KEAP1 serves as a key regulator of cellular metabolism, the reprogramming of which is one of the hallmarks of tumorigenesis. KEAP1 has a significant effect on mitochondrial biogenesis and oxidative phosphorylation by regulating HSPA9 ubiquitination and degradation. These results suggest that KEAP1 could serve as a potential biomarker and therapeutic target in the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Cell Proliferation , Kelch-Like ECH-Associated Protein 1 , Ubiquitination , Kelch-Like ECH-Associated Protein 1/metabolism , Humans , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Female , Animals , Mice , Cell Line, Tumor , Organelle Biogenesis , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Proteolysis , Mice, Nude , Mitochondria/metabolism , Apoptosis , Mice, Inbred BALB C , MCF-7 Cells , Mitochondrial Proteins
6.
Cell Rep ; 43(7): 114357, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38955182

ABSTRACT

Cell functions rely on intracellular transport systems distributing bioactive molecules with high spatiotemporal accuracy. The endoplasmic reticulum (ER) tubular network constitutes a system for delivering luminal solutes, including Ca2+, across the cell periphery. How the ER structure enables this nanofluidic transport system is unclear. Here, we show that ER membrane-localized reticulon 4 (RTN4/Nogo) is sufficient to impose neurite outgrowth inhibition in human cortical neurons while acting as an ER morphoregulator. Improving ER transport visualization methodologies combined with optogenetic Ca2+ dynamics imaging and in silico modeling, we observed that ER luminal transport is modulated by ER tubule narrowing and dilation, proportional to the amount of RTN4. Excess RTN4 limited ER luminal transport and Ca2+ release, while RTN4 elimination reversed the effects. The described morphoregulatory effect of RTN4 defines the capacity of the ER for peripheral Ca2+ delivery for physiological releases and thus may constitute a mechanism for controlling the (re)generation of neurites.


Subject(s)
Calcium , Endoplasmic Reticulum , Neurons , Nogo Proteins , Endoplasmic Reticulum/metabolism , Nogo Proteins/metabolism , Humans , Calcium/metabolism , Neurons/metabolism , Neurites/metabolism , Biological Transport , Neuronal Outgrowth/drug effects
7.
Cell Rep ; 43(8): 114537, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39052476

ABSTRACT

Various ribonucleoprotein complexes (RNPs) often function in the form of membraneless organelles derived from multivalence-driven liquid-liquid phase separation (LLPS). Post-translational modifications, such as phosphorylation and arginine methylation, govern the assembly and disassembly of membraneless organelles. This study reveals that asymmetric dimethylation of arginine can create extra binding sites for multivalent Tudor domain-containing proteins like survival of motor neuron (SMN) protein, thereby lowering the threshold for LLPS of RNPs, such as fused in sarcoma (FUS). Accordingly, FUS hypomethylation or knockdown of SMN disrupts the formation and transport of neuronal granules in axons. Wild-type SMN, but not the spinal muscular atrophy-associated form of SMN, SMN-Δ7, rescues neuronal defects due to SMN knockdown. Importantly, a fusion of SMN-Δ7 to an exogenous oligomeric protein is sufficient to rescue axon length defects caused by SMN knockdown. Our findings highlight the significant role of arginine methylation-enabled multivalent interactions in LLPS and suggest their potential impact on various aspects of neuronal activities in neurodegenerative diseases.


Subject(s)
Arginine , Cytoplasmic Granules , RNA-Binding Protein FUS , RNA-Binding Protein FUS/metabolism , Arginine/metabolism , Methylation , Humans , Animals , Cytoplasmic Granules/metabolism , Mice , Neurons/metabolism , Axons/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 1 Protein/genetics , Phase Separation
8.
Cell Rep ; 43(3): 113827, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38381607

ABSTRACT

Nuclear speckles (NSs) are nuclear biomolecular condensates that are postulated to form by macromolecular phase separation, although the detailed underlying forces driving NS formation remain elusive. SRRM2 and SON are 2 non-redundant scaffold proteins for NSs. How each individual protein governs assembly of the NS protein network and the functional relationship between SRRM2 and SON are largely unknown. Here, we uncover immiscible multiphases of SRRM2 and SON within NSs. SRRM2 and SON are functionally independent, specifically regulating alternative splicing of subsets of mRNA targets, respectively. We further show that SRRM2 forms multicomponent liquid phases in cells to drive NS subcompartmentalization, which is reliant on homotypic interaction and heterotypic non-selective protein-RNA complex coacervation-driven phase separation. SRRM2 serine/arginine-rich (RS) domains form higher-order oligomers and can be replaced by oligomerizable synthetic modules. The serine residues within the RS domains, however, play an irreplaceable role in fine-tuning the liquidity of NSs.


Subject(s)
Nuclear Speckles , RNA-Binding Proteins , RNA-Binding Proteins/metabolism , Phase Separation , Alternative Splicing/genetics , Serine/metabolism
9.
Cell Rep ; 43(3): 113926, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38457338

ABSTRACT

The Hippo signaling pathway is a central growth control mechanism in multicellular organisms. By integrating diverse mechanical, biochemical, and stress cues, the Hippo pathway orchestrates proliferation, survival, differentiation, and mechanics of cells, which in turn regulate organ development, homeostasis, and regeneration. A deep understanding of the regulation and function of the Hippo pathway therefore holds great promise for developing novel therapeutics in regenerative medicine. Here, we provide updates on the molecular organization of the mammalian Hippo signaling network, review the regulatory signals and functional outputs of the pathway, and discuss the roles of Hippo signaling in development and regeneration.


Subject(s)
Hippo Signaling Pathway , Protein Serine-Threonine Kinases , Animals , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/physiology , Cell Differentiation , Mammals/metabolism
10.
Cell Rep ; 43(2): 113751, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38341855

ABSTRACT

The premetastatic niche (PMN) contributes to lung-specific metastatic tropism in osteosarcoma. However, the crosstalk between primary tumor cells and lung stromal cells is not clearly defined. Here, we dissect the composition of immune cells in the lung PMN and identify granulocytic myeloid-derived suppressor cell (gMDSC) infiltration as positively associated with immunosuppressive PMN formation and tumor cell colonization. Osteosarcoma-cell-derived extracellular vesicles (EVs) activate lung interstitial macrophages to initiate the influx of gMDSCs via secretion of the chemokine CXCL2. Proteomic profiling of EVs reveals that EV-packaged S100A11 stimulates the Janus kinase 2/signal transducer and activator of transcription 3 signaling pathway in macrophages by interacting with USP9X. High level of S100A11 expression or circulating gMDSCs correlates with the presentation of lung metastasis and poor prognosis in osteosarcoma patients. In summary, we identify a key role of tumor-derived EVs in lung PMN formation, providing potential strategies for monitoring or preventing lung metastasis in osteosarcoma.


Subject(s)
Bone Neoplasms , Extracellular Vesicles , Lung Neoplasms , Osteosarcoma , Humans , Proteomics , S100 Proteins , Ubiquitin Thiolesterase
11.
Cell Rep ; 43(2): 113781, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38358888

ABSTRACT

Functional interplay between the endosomal sorting complexes required for transport (ESCRT) and the ubiquitin system underlies the ubiquitin-dependent cargo-sorting pathway of the eukaryotic endomembrane system, yet its evolutionary origin remains unclear. Here, we show that a UEV-Vps23 protein family, which contains UEV and Vps23 domains, mediates an ancient ESCRT and ubiquitin system interplay in Asgard archaea. The UEV binds ubiquitin with high affinity, making the UEV-Vps23 a sensor for sorting ubiquitinated cargo. A steadiness box in the Vps23 domain undergoes ubiquitination through an Asgard E1, E2, and RING E3 cascade. The UEV-Vps23 switches between autoinhibited and active forms, regulating the ESCRT and ubiquitin system interplay. Furthermore, the shared sequence and structural homology among the UEV-Vps23, eukaryotic Vps23, and archaeal CdvA suggest a common evolutionary origin. Together, this work expands our understanding of the ancient ESCRT and ubiquitin system interplay that likely arose antedating divergent evolution between Asgard archaea and eukaryotes.


Subject(s)
Archaea , Ubiquitin , Ubiquitination , Archaea/genetics , Cell Movement , Endosomal Sorting Complexes Required for Transport
12.
Cell Rep ; 43(8): 114650, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39159043

ABSTRACT

We describe a binary expression aleatory mosaic (BEAM) system, which relies on DNA delivery by transfection or viral transduction along with nested recombinase activity to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Control cells labeled with red fluorescent protein (RFP) can be directly compared with experimental cells manipulated by genetic gain or loss of function and labeled with GFP. Importantly, BEAM incorporates recombinase-dependent signal amplification and delayed reporter expression to enable sharper delineation of control and experimental cells and to improve reliability relative to existing methods. We applied BEAM to a variety of known phenotypes to illustrate its advantages for identifying temporally or spatially aberrant phenotypes, for revealing changes in cell proliferation or death, and for controlling for procedural variability. In addition, we used BEAM to test the cortical protomap hypothesis at the individual radial unit level, revealing that area identity is cell autonomously specified in adjacent radial units.


Subject(s)
Recombinases , Animals , Recombinases/metabolism , Recombinases/genetics , Mosaicism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Gene Expression/genetics , Red Fluorescent Protein , Green Fluorescent Proteins/metabolism , Green Fluorescent Proteins/genetics , Humans
13.
Cell Rep ; 43(8): 114649, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39159044

ABSTRACT

Each cargo in a cell employs a unique set of motor proteins for its transport. To dissect the roles of each type of motor, we developed optogenetic inhibitors of endogenous kinesin-1, -2, -3 and dynein motors and examined their effect on the transport of early endosomes, late endosomes, and lysosomes. While kinesin-1, -3, and dynein transport vesicles at all stages of endocytosis, kinesin-2 primarily drives late endosomes and lysosomes. Transient optogenetic inhibition of kinesin-1 or dynein causes both early and late endosomes to move more processively by relieving competition with opposing motors. Kinesin-2 and -3 support long-range transport, and optogenetic inhibition reduces the distances that their cargoes move. These results suggest that the directionality of transport is controlled through regulating kinesin-1 and dynein activity. On vesicles transported by several kinesin and dynein motors, modulating the activity of a single type of motor on the cargo is sufficient to direct motility.


Subject(s)
Dyneins , Kinesins , Optogenetics , Kinesins/metabolism , Optogenetics/methods , Dyneins/metabolism , Humans , Animals , Endosomes/metabolism , Lysosomes/metabolism , Biological Transport , HeLa Cells , Endocytosis
14.
Cell Rep ; 43(6): 114304, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38843396

ABSTRACT

High TRABD expression is associated with tau pathology in patients with Alzheimer's disease; however, the function of TRABD is unknown. Human TRABD encodes a mitochondrial outer-membrane protein. The loss of TRABD resulted in mitochondrial fragmentation, and TRABD overexpression led to mitochondrial clustering and fusion. The C-terminal tail of the TRABD anchored to the mitochondrial outer membrane and the TraB domain could form homocomplexes. Additionally, TRABD forms complexes with MFN2, MIGA2, and PLD6 to facilitate mitochondrial fusion. Flies lacking dTRABD are viable and have normal lifespans. However, aging flies exhibit reduced climbing ability and abnormal mitochondrial morphology in their muscles. The expression of dTRABD is increased in aged flies. dTRABD overexpression leads to neurodegeneration and enhances tau toxicity in fly eyes. The overexpression of dTRABD also increased reactive oxygen species (ROS), ATP production, and protein turnover in the mitochondria. This study suggested that TRABD-induced mitochondrial malfunctions contribute to age-related neurodegeneration.


Subject(s)
Drosophila melanogaster , Homeostasis , Mitochondria , Reactive Oxygen Species , Animals , Mitochondria/metabolism , Humans , Reactive Oxygen Species/metabolism , Drosophila melanogaster/metabolism , tau Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Mitochondrial Dynamics , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Membranes/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Aging/metabolism , GTP Phosphohydrolases/metabolism
15.
Cell Rep ; 43(2): 113759, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345898

ABSTRACT

Neuron migration is a key phase of neurogenesis, critical for the assembly and function of neuronal circuits. In songbirds, this process continues throughout life, but how these newborn neurons disperse through the adult brain is unclear. We address this question using in vivo two-photon imaging in transgenic zebra finches that express GFP in young neurons and other cell types. In juvenile and adult birds, migratory cells are present at a high density, travel in all directions, and make frequent course changes. Notably, these dynamic migration patterns are well fit by a superdiffusive model. Simulations reveal that these superdiffusive dynamics are sufficient to disperse new neurons throughout the song nucleus HVC. These results suggest that superdiffusive migration may underlie the formation and maintenance of nuclear brain structures in the postnatal brain and indicate that transgenic songbirds are a useful resource for future studies into the mechanisms of adult neurogenesis.


Subject(s)
Songbirds , Animals , Songbirds/physiology , Vocalization, Animal/physiology , Brain/metabolism , Animals, Genetically Modified , Neurons/metabolism , Neurogenesis/physiology
16.
Cell Rep ; 43(3): 113866, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38416638

ABSTRACT

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-µm diameter limit for 3D migration through gaps in the extracellular matrix. We show that the nuclear shape change is partially attained through reduced cell adhesion, whereas improved 3D migration is achieved through reprogramming of the actin cytoskeleton. Specifically, our data point to a model whereby the phosphorylation of cofilin-1 at serine 41 drives the assembly of a cofilin-actomyosin ring proximal to the nucleus and enhances migration through 3D collagen gels. In summary, these data describe signaling events through which dendritic cells deform their nucleus and enhance their migratory capacity.


Subject(s)
Actin Depolymerizing Factors , Actomyosin , Actin Depolymerizing Factors/metabolism , Cell Movement/physiology , Actomyosin/metabolism , Cytokinesis , Cofilin 1/metabolism , Extracellular Matrix/metabolism , Dendritic Cells/metabolism
17.
Cell Rep ; 43(7): 114423, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38968072

ABSTRACT

Actin assembly and dynamics are crucial for maintaining cell structure and changing physiological states. The broad impact of actin on various cellular processes makes it challenging to dissect the specific role of actin regulatory proteins. Using actin waves that propagate on the cortex of mast cells as a model, we discovered that formins (FMNL1 and mDia3) are recruited before the Arp2/3 complex in actin waves. GTPase Cdc42 interactions drive FMNL1 oscillations, with active Cdc42 and the constitutively active mutant of FMNL1 capable of forming waves on the plasma membrane independently of actin waves. Additionally, the delayed recruitment of Arp2/3 antagonizes FMNL1 and active Cdc42. This antagonism is not due to competition for monomeric actin but rather for their common upstream regulator, active Cdc42, whose levels are negatively regulated by Arp2/3 via SHIP1 recruitment. Collectively, our study highlights the complex feedback loops in the dynamic control of the actin cytoskeletal network.


Subject(s)
Actin-Related Protein 2-3 Complex , Actins , Formins , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Animals , Formins/metabolism , cdc42 GTP-Binding Protein/metabolism , Humans , Mast Cells/metabolism , Mice , Actin Cytoskeleton/metabolism
18.
Cell Rep ; 43(10): 114776, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39305484

ABSTRACT

The EFA6 protein family, originally identified as Sec7 guanine nucleotide exchange factors, has also been found to regulate cortical microtubule (MT) dynamics. Here, we find that in the mature C. elegans epidermal epithelium, EFA-6 forms punctate foci in specific regions of the apical cortex, dependent on its intrinsically disordered region (IDR). The EFA-6 IDR can form biomolecular condensates in vitro. In genetic screens for mutants with altered GFP::EFA-6 localization, we identified a gain-of-function (gf) mutation in α-tubulin tba-1 that induces ectopic EFA-6 foci in multiple cell types. Lethality of tba-1(gf) is partially suppressed by loss of function in efa-6. The ability of TBA-1(gf) to trigger ectopic EFA-6 foci requires ß-tubulin TBB-2 and the chaperon EVL-20/Arl2. tba-1(gf)-induced EFA-6 foci display slower turnover, contain the MT-associated protein TAC-1/TACC, and require the EFA-6 MT elimination domain (MTED). Our results reveal functionally important crosstalk between cellular tubulins and cortical MT regulators in vivo.

19.
Cell Rep ; 43(4): 113970, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38512868

ABSTRACT

To meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1). Through whole-tissue clearing, we demonstrate that Tacr1 neurons extend local and long-range projections across functionally connected cortical areas. We show that whisker stimulation elicited Tacr1 neuron activity in the barrel cortex through feedforward excitatory pathways. Additionally, through optogenetic experiments, we demonstrate that Tacr1 neurons are instrumental in mediating CBF through the relaxation of mural cells in a similar fashion to whisker stimulation. Finally, by electron microscopy, we observe that Tacr1 processes contact astrocytic endfeet. These findings suggest that Tacr1 neurons integrate cortical activity to mediate NVC.


Subject(s)
Neurovascular Coupling , Animals , Mice , Neurovascular Coupling/physiology , Humans , Neurons/metabolism , Neurons/physiology , Vibrissae/physiology , Mice, Inbred C57BL , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Male , Cerebral Cortex/physiology , Cerebral Cortex/blood supply , Cerebrovascular Circulation/physiology , Nitric Oxide Synthase Type I/metabolism
20.
Cell Rep ; 43(7): 114435, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38985673

ABSTRACT

Cell membranes mediate interactions between life and its environment, with lipids determining their properties. Understanding how cells adjust their lipidomes to tune membrane properties is crucial yet poorly defined due to the complexity of most organisms. We used quantitative shotgun lipidomics to study temperature adaptation in the simple organism Mycoplasma mycoides and the minimal cell JCVI-syn3B. We show that lipid abundances follow a universal logarithmic distribution across eukaryotes and bacteria, with comparable degrees of lipid remodeling for adaptation regardless of lipidomic or organismal complexity. Lipid features analysis demonstrates head-group-specific acyl chain remodeling as characteristic of lipidome adaptation; its deficiency in Syn3B is associated with impaired homeoviscous adaptation. Temporal analysis reveals a two-stage cold adaptation process: swift cholesterol and cardiolipin shifts followed by gradual acyl chain modifications. This work provides an in-depth analysis of lipidome adaptation in minimal cells, laying a foundation to probe the design principles of living membranes.


Subject(s)
Adaptation, Physiological , Lipidomics , Mycoplasma mycoides , Temperature , Mycoplasma mycoides/metabolism , Lipids/chemistry , Lipid Metabolism , Cholesterol/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL