Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Cell Mol Neurobiol ; 43(8): 3847-3884, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37725199

ABSTRACT

Alzheimer's disease (AD) is the primary cause of dementia and is characterized by the death of brain cells due to the accumulation of insoluble amyloid plaques, hyperphosphorylation of tau protein, and the formation of neurofibrillary tangles within the cells. AD is also associated with other pathologies such as neuroinflammation, dysfunction of synaptic connections and circuits, disorders in mitochondrial function and energy production, epigenetic changes, and abnormalities in the vascular system. Despite extensive research conducted over the last hundred years, little is established about what causes AD or how to effectively treat it. Given the severity of the disease and the increasing number of affected individuals, there is a critical need to discover effective medications for AD. The US Food and Drug Administration (FDA) has approved several new drug molecules for AD management since 2003, but these drugs only provide temporary relief of symptoms and do not address the underlying causes of the disease. Currently, available medications focus on correcting the neurotransmitter disruption observed in AD, including cholinesterase inhibitors and an antagonist of the N-methyl-D-aspartate (NMDA) receptor, which temporarily alleviates the signs of dementia but does not prevent or reverse the course of AD. Research towards disease-modifying AD treatments is currently underway, including gene therapy, lipid nanoparticles, and dendrimer-based therapy. These innovative approaches aim to target the underlying pathological processes of AD rather than just managing the symptoms. This review discusses the novel aspects of pathogenesis involved in the causation of AD of AD and in recent developments in the therapeutic armamentarium for the treatment of AD such as gene therapy, lipid nanoparticles, and dendrimer-based therapy, and many more.


Subject(s)
Alzheimer Disease , Dendrimers , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Dendrimers/metabolism , Dendrimers/therapeutic use , Cholinesterase Inhibitors , Neurofibrillary Tangles/metabolism , Brain/metabolism , Amyloid beta-Peptides/metabolism
2.
Sens Actuators B Chem ; 390: 133950, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37193119

ABSTRACT

Mpox (formerly referred as Monkeypox) outbreak has been declared a Public Health Emergency of International Concern. However, traditional polymerase chain reaction (PCR) diagnostic technology is not ideal for on-site applications. To conduct the sample-to-result Mpox viral particles detection outside the laboratories, we developed an easy-to-operate palm-size pouch, termed Mpox At-home Self-Test and point-of-caRe Pouch (MASTR Pouch). In this MASTR Pouch, the fast and accurate visualization was achieved by incorporating recombinase polymerase amplification (RPA) with clustered regularly interspaced short palindromic repeat (CRISPR)/Cas12a system. From viral particle lysis to naked eye readout, MASTR Pouch required only four simple steps to accomplish the analysis process within 35 min. Fifty-three Mpox pseudo-viral particles in exudate (10.6 particles/µL) were able to be detected. To verify the practicability, 104 mock Mpox clinical exudate specimens were tested. The clinical sensitivities were determined to be 91.7%- 95.8%. There was no false-positive result, validating the 100% clinical specificity. MASTR Pouch approaches the WHO's ASSURD criteria for point-of-care diagnostic, which will be beneficial for mitigating Mpox's global spread. The versatility potential of MASTR Pouch could further revolutionize infection diagnosis.

3.
Reprod Biomed Online ; 45(1): 5-9, 2022 07.
Article in English | MEDLINE | ID: mdl-35562236

ABSTRACT

Endometriosis is a sex hormone-dependent, painful disease that affects 10-15% of women worldwide with no definitive cure, and current treatments are not always effective. This limitation is mainly due to gaps in our knowledge about the mechanisms involved in the pathogenesis of endometriosis at the cellular and molecular levels. Hormonal dysregulation appears to be responsible for inflammation, angiogenesis, endometrial non-receptivity, embryo implantation failure and infertility in women with endometriosis. Although correlative evidence about possible causes of hormonal dysregulations exists, the functional mechanisms remain unknown. Reliable research models of endometriosis are needed to investigate the exact mechanisms that underlie hormone disruptions. This Commentary discusses the available in-vivo and in-vitro systems for studying endometriosis. The authors emphasize the recently developed human endometriosis organoids as cutting-edge and innovative research models for endometriosis investigations, discuss their advantages and describe challenges that must be addressed to yield a reliable in-vitro model of human endometriosis. Moreover, it discusses microfluidic technology to address the present challenges for producing advanced endometriosis organoids and how to benefit from CRISPR technology to improve our knowledge about disturbed hormonal function in patients with endometriosis.


Subject(s)
Endometriosis , Infertility, Female , Embryo Implantation/physiology , Endometriosis/pathology , Endometrium/pathology , Female , Humans , Infertility, Female/therapy , Organoids/pathology
4.
Mol Biol Rep ; 49(6): 5595-5609, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35585381

ABSTRACT

Legumes are an imperative source of food and proteins across the globe. They also improve soil fertility through symbiotic nitrogen fixation (SNF). Genome editing (GE) is now a novel way of developing desirable traits in legume crops. Genome editing tools like clustered regularly interspaced short palindromic repeats (CRISPR) system permits a defined genome alteration to improve crop performance. This genome editing tool is reliable, cost-effective, and versatile, and it has to deepen in terms of use compared to other tools. Recently, many novel variations have drawn the attention of plant geneticists, and efforts are being made to develop trans-gene-free cultivars for ensuring biosafety measures. This review critically elaborates on the recent development in genome editing of major legumes crops. We hope this updated review will provide essential informations for the researchers working on legumes genome editing. In general, the CRISPR/Cas9 novel GE technique can be integrated with other techniques like omics approaches and next-generation tools to broaden the range of gene editing and develop any desired legumes traits. Regulatory ethics of CRISPR/Cas9 are also discussed.


Subject(s)
Fabaceae , Gene Editing , CRISPR-Cas Systems/genetics , Crops, Agricultural/genetics , Fabaceae/genetics , Gene Editing/methods , Genome, Plant/genetics , Vegetables/genetics
5.
Drug Metab Rev ; 53(4): 508-541, 2021 11.
Article in English | MEDLINE | ID: mdl-33980089

ABSTRACT

Developing effective strategies to confront coronavirus disease 2019 (COVID-19) has become one of the greatest concerns of the scientific community. In addition to the vast number of global mortalities due to COVID-19, since its outbreak, almost every aspect of human lives has changed one way or another. In the present review, various defensive and offensive strategies developed to confront COVID-19 are illustrated. The Administration of immune-boosting micronutrients/agents, as well as the inhibition of the activity of incompetent gatekeepers, including some host cell receptors (e.g. ACE2) and proteases (e.g. TMPRSS2), are some efficient defensive strategies. Antibody/phage therapies and specifically vaccines also play a prominent role in the enhancement of host defense against COVID-19. Nanotechnology, however, can considerably weaken the virulence of SARS-CoV-2, utilizing fake cellular locks (compounds mimicking cell receptors) to block the viral keys (spike proteins). Generally, two strategies are developed to interfere with the binding of spike proteins to the host cell receptors, either utilizing fake cellular locks to block the viral keys or utilizing fake viral keys to block the cellular locks. Due to their evolutionary conserved nature, viral enzymes, including 3CLpro, PLpro, RdRp, and helicase are highly potential targets for drug repurposing strategy. Thus, various steps of viral replication/transcription can effectively be blocked by their inhibition, leading to the elimination of SARS-CoV-2. Moreover, RNA decoy and CRISPR technologies likely offer the best offensive strategies after viral entry into the host cells, inhibiting the viral replication/assembly in the infected cells and substantially reducing the quantity of viral progeny.


Subject(s)
COVID-19 , Drug Repositioning , Humans , SARS-CoV-2 , Virus Internalization , Virus Replication
6.
Helicobacter ; 26(4): e12828, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34117655

ABSTRACT

BACKGROUND: Noninvasive detection of Helicobacter pylori plays an important role in clinical practice. However, few noninvasive methods have been applied in epidemiological studies due to the requirement for expensive equipment and complicated processes. The aim of this study was to establish a reliable, fast, and inexpensive noninvasive method based on CRISPR-Cas12a technology for the detection of Helicobacter pylori in stool specimens. METHOD: A novel detection method based on CRISPR-Cas12a technology was established and validated with 41 stool specimens collected from Zhujiang Hospital and compared with reliable Helicobacter pylori detection assays, such as the rapid urease test and urea breath test. RESULT: A CRISPR-Cas12a system-based method was established, and its sensitivity and specificity were evaluated. Utilizing a lateral flow biosensor, the limit of detection was 5 copies/µl, and our method could successfully distinguish Helicobacter pylori from other pathogens, suggesting no cross-reactivity with other pathogens. Furthermore, lateral flow biosensor strips were utilized to test stool specimens, which could display the detection results in an accessible way. CONCLUSION: Our CRISPR-Cas12a system-based method successfully detected Helicobacter pylori in stool specimens. It is a rapid, simple, and inexpensive method for the detection and screening of Helicobacter pylori, which makes it a very promising supplemental test. However, its sensitivity and specificity compared with those of the gold standard test still need to be examined.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Antigens, Bacterial , Clustered Regularly Interspaced Short Palindromic Repeats , Feces , Helicobacter Infections/diagnosis , Helicobacter pylori/genetics , Humans , Sensitivity and Specificity
7.
Nanomedicine ; 33: 102350, 2021 04.
Article in English | MEDLINE | ID: mdl-33359413

ABSTRACT

Infectious and hereditary diseases are the primary cause of human mortality globally. Applications of conventional techniques require significant improvement in sensitivity and specificity in therapeutics. However, clustered regularly interspaced short palindromic repeats (CRISPRs) is an innovative genome editing technology which has provided a significant therapeutic tool exhibiting high sensitivity, fast and precise investigation of distinct pathogens in an epidemic. CRISPR technology has also facilitated the understanding of the biology and therapeutic mechanism of cancer and several other hereditary diseases. Researchers have used the CRISPR technology as a theranostic approach for a wide range of diseases causing pathogens including distinct bacteria, viruses, fungi and parasites and genetic mutations as well. In this review article, besides various therapeutic applications of infectious and hereditary diseases we have also explained the structure and mechanism of CRISPR tools and role of CRISPR integrated biosensing technology in provoking diagnostic applications.


Subject(s)
Genetic Therapy/methods , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Precision Medicine/methods , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Communicable Diseases , Fungi , Gene Editing , Humans , Mutation , Parasites , Viruses
8.
Int J Mol Sci ; 22(13)2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34281227

ABSTRACT

There is a rapidly increasing prevalence of obesity and related metabolic disorders such as type 2 diabetes worldwide. White adipose tissue (WAT) stores excess energy, whereas brown and beige adipose tissues consume energy to generate heat in the process of thermogenesis. Adaptive thermogenesis occurs in response to environmental cues as a means of generating heat by dissipating stored chemical energy. Due to its cumulative nature, very small differences in energy expenditure from adaptive thermogenesis can have a significant impact on systemic metabolism over time. Targeting brown adipose tissue (BAT) activation and converting WAT to beige fat as a method to increase energy expenditure is one of the promising strategies to combat obesity. In this review, we discuss the activation of the thermogenic process in response to physiological conditions. We highlight recent advances in harnessing the therapeutic potential of thermogenic adipocytes by genetic, pharmacological and cell-based approaches in the treatment of obesity and metabolic disorders in mice and the human.


Subject(s)
Adipocytes, Brown , Obesity/therapy , Thermogenesis , Animals , Cell- and Tissue-Based Therapy , Drug Therapy , Genetic Therapy , Humans
9.
Int J Mol Sci ; 21(12)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575694

ABSTRACT

Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.


Subject(s)
Codon, Nonsense , RNA, Messenger/chemistry , Small Molecule Libraries/therapeutic use , Clinical Trials as Topic , Codon, Nonsense/drug effects , Genetic Predisposition to Disease , Humans , Nonsense Mediated mRNA Decay/drug effects , Polymorphism, Single Nucleotide , Precision Medicine , RNA, Messenger/drug effects , Small Molecule Libraries/pharmacology
10.
Crit Rev Biotechnol ; 37(1): 112-136, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27535766

ABSTRACT

Over the past 15 years, the seismic shifts caused by the convergence of biomolecular, chemical, physical, mathematical, and computational sciences alongside cutting-edge developments in information technology and engineering have erupted into a new field of scientific endeavor dubbed Synthetic Biology. Recent rapid advances in high-throughput DNA sequencing and DNA synthesis techniques are enabling the design and construction of new biological parts (genes), devices (gene networks) and modules (biosynthetic pathways), and the redesign of biological systems (cells and organisms) for useful purposes. In 2014, the budding yeast Saccharomyces cerevisiae became the first eukaryotic cell to be equipped with a fully functional synthetic chromosome. This was achieved following the synthesis of the first viral (poliovirus in 2002 and bacteriophage Phi-X174 in 2003) and bacterial (Mycoplasma genitalium in 2008 and Mycoplasma mycoides in 2010) genomes, and less than two decades after revealing the full genome sequence of a laboratory (S288c in 1996) and wine (AWRI1631 in 2008) yeast strain. A large international project - the Synthetic Yeast Genome (Sc2.0) Project - is now underway to synthesize all 16 chromosomes (∼12 Mb carrying ∼6000 genes) of the sequenced S288c laboratory strain by 2018. If successful, S. cerevisiae will become the first eukaryote to cross the horizon of in silico design of complex cells through de novo synthesis, reshuffling, and editing of genomes. In the meantime, yeasts are being used as cell factories for the semi-synthetic production of high-value compounds, such as the potent antimalarial artemisinin, and food ingredients, such as resveratrol, vanillin, stevia, nootkatone, and saffron. As a continuum of previously genetically engineered industrially important yeast strains, precision genome engineering is bound to also impact the study and development of wine yeast strains supercharged with synthetic DNA. The first taste of what the future holds is the de novo production of the raspberry ketone aroma compound, 4-[4-hydroxyphenyl]butan-2-one, in a wine yeast strain (AWRI1631), which was recently achieved via metabolic pathway engineering and synthetic enzyme fusion. A peek over the horizon is revealing that the future of "Wine Yeast 2.0" is already here. Therefore, this article seeks to help prepare the wine industry - an industry rich in history and tradition on the one hand, and innovation on the other - for the inevitable intersection of the ancient art practiced by winemakers and the inventive science of pioneering "synthetic genomicists". It would be prudent to proactively engage all stakeholders - researchers, industry practitioners, policymakers, regulators, commentators, and consumers - in a meaningful dialog about the potential challenges and opportunities emanating from Synthetic Biology. To capitalize on the new vistas of synthetic yeast genomics, this paper presents wine yeast research in a fresh context, raises important questions and proposes new directions.


Subject(s)
Genome, Fungal , Wine/microbiology , Yeasts/genetics , Yeasts/metabolism
11.
Microbiol Spectr ; : e0034524, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39254031

ABSTRACT

The potential of CRISPR/Cas systems for nucleic acid detection in novel biosensing applications is remarkable. The current clinical diagnostic detection of Streptococcus pyogenes (S. pyogenes) is based on serological identification, culture, and PCR. We report a rapid, simple, and sensitive method for detecting and screening for S. pyogenes. This novel method is a promising supplemental test. After 10 min of the sample processing and 10 min of recombinase polymerase amplification, followed by 10 min of Cas12 reaction and 3 min of lateral flow biosensor (LFB) readout, a visible outcome can be observed without the need for magnification within 33 min. This platform is robust, inexpensive, and appropriate for on-site testing. A new technique for detection was created using CRISPR-Cas12a technology, which includes two measurements: a fluorescent-CRISPR-S. pyogenes test and a LFB-CRISPR-S. pyogenes test. An approach utilizing CRISPR Cas12a was developed, and the accuracy and precision of this technique were assessed. The LoD for the fluorescence-CRISPR- S. pyogenes assay was 1 copy/µL, and the technique effectively differentiated S. pyogenes from other microorganisms. Moreover, the detection outcomes were presented in a user-friendly manner using lateral flow biosensor strips. Conclusion: A rapid and sensitive Cas12a/crRNA assay using recombinase RPA and LFB was developed to detect S. pyogenes. The Cas12a/crRNA-based assay exhibited high specificity among different bacteria strains and extremely high sensitivity. The accuracy and rapidity of this method make it a promising tool for S. pyogenes detection and screening. IMPORTANCE: Patients may experience a range of symptoms due to Streptococcus pyogenes infections, including superficial skin infections, pharyngitis, and invasive diseases in subcutaneous tissues like streptococcal toxic shock syndrome. At present, the clinical diagnostic detection of S. pyogenes is based on serological identification, culture, and PCR. These detection methods are time-consuming and require sophisticated equipment, making these methods challenging for routine laboratories. Thus, there is a need for a detection platform that is capable of quickly and accurately identifying S. pyogenes. In this study, a rapid and sensitive Cas12a/crRNA assay using recombinase RPA and LFB was developed to detect S. pyogenes. The Cas12a/crRNA-based assay exhibited high specificity among different bacteria strains and extremely high sensitivity. This method probably plays an important role for S. pyogenes detection and screening.

12.
Methods Mol Biol ; 2844: 145-156, 2024.
Article in English | MEDLINE | ID: mdl-39068338

ABSTRACT

Gene promoters serve as pivotal regulators of transcription, orchestrating the initiation, rate, and specificity of gene expression, resulting in cellular diversity found among distinct cell types within multicellular organisms. Identification of the sequence and function of promoters' regulatory elements and their complex interaction with transcription factors, enhancers, silencers, and insulators is fundamental to coordinated transcriptional processes within cells. Identifying these regulatory elements and scrutinizing their functions and interactions through the use of synthetic promoters can pave the way for researchers in various fields ranging from uncovering the origins of diseases associated with promoter mutations to harnessing these regulatory components in biotechnological applications.In this chapter, we describe the manipulation of regulatory elements within promoters, with a specific focus on the use of CRISPR technology on enhancers and silencer elements of the Ovalbumin gene promoter. We explain and discuss processes for the deletion of/interference with regulatory elements within the promoter, employing CRISPR-based approaches. Furthermore, we demonstrate that a CRISPR/Cas-manipulated promoter can activate gene transcription in cell types where it is normally inactive. This confirms that CRISPR technology can be effectively used to engineer synthetic promoters with desired characteristics, such as inducibility, tissue-specificity, or enhanced transcriptional strength. Such an approach provides valuable insights into the mechanisms and dynamics of gene expression, thereby offering new opportunities in the fields of biotechnology and medicine.


Subject(s)
CRISPR-Cas Systems , Promoter Regions, Genetic , Animals , Humans , Gene Expression Regulation , Enhancer Elements, Genetic , Ovalbumin/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics
13.
Chem Biol Drug Des ; 103(1): e14374, 2024 01.
Article in English | MEDLINE | ID: mdl-37994213

ABSTRACT

Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.


Subject(s)
Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/therapy , Schizophrenia/metabolism , Genome-Wide Association Study , DNA Copy Number Variations , Brain/metabolism , Epigenesis, Genetic , Polymorphism, Single Nucleotide
14.
Chem Biol Drug Des ; 103(1): e14404, 2024 01.
Article in English | MEDLINE | ID: mdl-38092663

ABSTRACT

As an expert in the field of drug design and discovery, I tried, in this up-to-date perspective or commentary article, to recap and shed light on the previous and latest revolutionary strategies employed in medicinal and therapeutic chemistry to target the principal viral weapon used by virulent RNA viruses (e.g., the severe acute respiratory syndrome coronavirus 2 "SARS-CoV-2") to infect humans and spread infections, the genomic RNA strands. These strategies act by taking advantage of the weakness points of this attractive bioweapon to disable or attack it (itself), accordingly stop the entire viral reproduction, and effectively end the severe microbial infections such as the coronavirus disease 2019 (COVID-19). The generation of respective slightly falsely-weaved RNA strands, either endogenously or exogenously, is the principal key for designing most of these therapeutic approaches.


Subject(s)
COVID-19 , RNA , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , RNA-Dependent RNA Polymerase , SARS-CoV-2 , RNA, Viral
15.
Eur J Cell Biol ; 102(2): 151299, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36809688

ABSTRACT

BACKGROUND: Drug resistance is a serious challenge in cancer treatment that can render chemotherapy a failure. Understanding the mechanisms behind drug resistance and developing novel therapeutic approaches are cardinal steps in overcoming this issue. Clustered regularly interspaced short palindrome repeats (CRISPR) gene-editing technology has proven to be a useful tool to study cancer drug resistance mechanisms and target the responsible genes. In this review, we evaluated original research studies that used the CRISPR tool in three areas related to drug resistance, namely screening resistance-related genes, generating modified models of resistant cells and animals, and removing resistance by genetic manipulation. We reported the targeted genes, study models, and drug groups in these studies. In addition to discussing different applications of CRISPR technology in cancer drug resistance, we analyzed drug resistance mechanisms and provided examples of CRISPR's role in studying them. Although CRISPR is a powerful tool for examining drug resistance and sensitizing resistant cells to chemotherapy, more studies are required to overcome its disadvantages, such as off-target effects, immunotoxicity, and inefficient delivery of CRISPR/cas9 into the cells.


Subject(s)
Gene Editing , Neoplasms , Animals , Drug Resistance , Neoplasms/drug therapy , Neoplasms/genetics
16.
Cell Genom ; 3(5): 100300, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37228745

ABSTRACT

While our knowledge of gene expression in different human cell types is rapidly expanding with advances in transcriptomic profiling technologies, the next challenge is to understand gene function in each cell type. CRISPR-Cas9-based functional genomics screening offers a powerful approach to determine gene function in a high-throughput manner. With the maturation of stem cell technology, a variety of human cell types can be derived from human pluripotent stem cells (hPSCs). Recently, the integration of CRISPR screening with hPSC differentiation technologies opens up unprecedented opportunities to systematically examine gene function in different human cell types and identify mechanisms and therapeutic targets for human diseases. This review highlights recent progress in the development and applications of CRISPR-Cas9-based functional genomics screening in hPSC-derived cell types, discusses current challenges and limitations, and outlines future directions for this emerging field.

17.
J Biol Eng ; 17(1): 46, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37461059

ABSTRACT

BACKGROUND: Hormone-dependent promoters are very efficient in transgene expression. Plasmid-based reporter assays have identified regulatory sequences of the Ovalbumin promoter that are involved in response to estrogen and have shown that the deletion of the steroid-dependent regulatory element (SDRE) and negative regulatory element (NRE) leads to a steroid-independent expression of a reporter. However, the functional roles of these regulatory elements within the native genomic context of the Ovalbumin promoter have not been evaluated. RESULTS: In this study, we show that the negative effects of the NRE element on the Ovalbumin gene can be counteracted by CRISPR interference. We also show that the CRISPR-mediated deletion of SDRE and NRE promoter elements in a non-oviduct cell can lead to the significant expression of the Ovalbumin gene. In addition, the targeted knock-in of a transgene reporter in the Ovalbumin coding region and its expression confirms that the truncated promoter of the Ovalbumin gene can be efficiently used for an estrogen-independent expression of a foreign gene. CONCLUSIONS: The methodology applied in this paper allowed the study of promoter regulatory sequences in their native nuclear organization.

18.
Trends Biotechnol ; 41(7): 853-856, 2023 07.
Article in English | MEDLINE | ID: mdl-36739179

ABSTRACT

The recent discovery of the horizontal transfer of a toxin-neutralizing gene from plant to whitefly (Bemisia tabaci), a polyphagous insect, sparked a new area of study. In this forum, we discuss some potential biotechnological applications of this newly discovered knowledge in the coevolutionary arms race between plants and whitefly.


Subject(s)
Hemiptera , Animals , Hemiptera/genetics , Gene Transfer, Horizontal
19.
ACS Synth Biol ; 12(7): 2051-2060, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37432138

ABSTRACT

The Rapid Visual CRISPR (RAVI-CRISPR) assay employs Cas12a and Cas13a enzymes for precise gene detection in a sample. However, RAVI-CRISPR is limited in single-tube multiplex detection applications due to the lack of specific single-strand (ss) DNA-fluorescently quenched (ssDNA-FQ) and RNA-fluorescently quenched (ssRNA-FQ) reporter cleavage mechanisms. We report the development of a sensitive and specific dual-gene Cas12a and Cas13a diagnostic system. To optimize the application for field testing, we designed a portable multiplex fluorescence imaging assay that could distinguish test results with the naked eye. Herein, dual gene amplified products from multiplex recombinase polymerase amplification (RPA) were simultaneously detected in a single tube using Cas12a and Cas13a enzymes. The resulting orthogonal DNA and RNA collateral cleavage specifically distinguishes individual and mixed ssDNA-FQ and ssRNA-FQ reporters using the green-red-yellow, fluorescent signal conversion reaction system, detectable with portable blue and ultraviolet (UV) light transilluminators. As a proof-of-concept, reliable multiplex RAVI-CRISPR detection of genome-edited pigs was demonstrated, exhibiting 100% sensitivity and specificity for the analysis of CD163 knockout, lactoferrin (LF) knock-in, and wild-type pig samples. This portable naked-eye multiplex RAVI-CRISPR detection platform can provide accurate point-of-care screening of genetically modified animals and infectious diseases in resource-limited settings.


Subject(s)
CRISPR-Cas Systems , Point-of-Care Systems , Animals , Swine , CRISPR-Cas Systems/genetics , Biological Assay , DNA, Single-Stranded/genetics , RNA , Nucleic Acid Amplification Techniques
20.
Gene ; 867: 147358, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36914142

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by the dystrophin gene mutations and is one of the most common and lethal human hereditary disorders. A novel therapeutic approach using CRISPR technology has gained attention in the treatment of DMD. Gene replacement strategies are being proposed as a promising therapeutic option to compensate the loss of function mutations. Although, the large size of the dystrophin gene and the limitations of the existing gene replacement approach, could mean the gene delivery of shortened versions of dystrophin such as midystrophin and microdystrophins. There are also other approaches: including Targeted removal of dystrophin exons to restore the reading-frame; Dual sgRNA-directed DMD exon deletion, CRISPR-SKIP strategy; reframing of dystrophin using Prime Editing technology; exon removal using twin prime technology; TransCRISTI technology to targeted exon integration into dystrophin gene. Here we provide an overview of recent progresses in dystrophin gene editing using updated versions of CRISPR to introduce novel opportunities in DMD gene therapy. Overall, the novel CRISPR based technologies are improving and expanding to allow the application of more precise gene editing for the treatment of DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/therapy , Dystrophin/genetics , CRISPR-Cas Systems , Gene Editing , Genetic Therapy
SELECTION OF CITATIONS
SEARCH DETAIL